Hydrochemistry of Springs and Groundwaters at the Sevilleta National Wildlife Refuge, New Mexico, 2007-2009


The Rio Grande is well-studied as a regionally important water source, but the small, poorly characterized springs that surface within the Rio Grande rift are also a vital resource. Several of these springs have water chemistries that suggest a mixing of larger volume meteoric recharge with small volume, deeply-sourced fluids. It has been hypothesized that deep-seated faults within the rift provide conduits for the ascent of deeply-derived fluids, while others have proposed that upwelling sedimentary basin brines represent a significant salinity input to the modern river. This study provided the first hydrochemical data on a comprehensive suite of springs and wells in the Sevilleta National Wildlife Refuge, and tested and refined existing models for water quality in the rift using hydrochemistry, microbial characterization, and geochemical modeling along a series of transects.

Core Areas: 

Additional Project roles: 


Data set ID: 




The purpose of this study was to examine the geochemical inputs which characterized a small number of springs and wells within a hydrologic system exhibiting minimal anthropogenic influence on the Sevilleta National Wildlife Refuge (SNWR). Because such analyses had not been performed previously in the study area, there was no existing information on what sources wildlife in the SNWR used for drinking or what geochemical compounds were percolating through the subsurface as groundwater moved toward the Rio Grand.


Sampling Design: The sampling region encompassed the Sevilleta National Wildlife Refuge. Major springs were sampled once a quarter. Wells were sampled once in the summer 2008 field season.

Experimental Design: All water samples (including replicates) were analyzed for major ions. Each sample site (no replicates) was analyzed for stable isotopes of oxygen and hydrogen and trace elements. A select number of samples was analyzed for stable isotopes of carbon and 87Sr/86Sr ratios.

Field Methods: In the field, water samples were collected in at least two 125mL pre-cleaned or sterile high density polyethylene bottles. Prior to collection, each bottle was pre-contaminated three times with the sample water and emptied downstream from the locality. To minimize degassing, all unfiltered, unacidified samples were collected with zero headspace, either by submerging the bottle and capping under water or filling the bottle to overflowing and then capping.

Samples for inductively coupled plasma (ICP) analysis were filtered through a 0.45µm membrane attached to the sampling syringe and acidified with 16N HNO3. pH, conductivity, and temperature were measured in the field with an Oakton pH/CON 300 Series pH/conductivity/TDS/ºC meter.

Well water samples were collected in three 125mL and two 30mL high-density polyethylene (HDPE) bottles. Wells were purged of up to three well volumes of water to ensure groundwater, and not borewater, was sampled. Well purge times were calculated from the USGS Techniques of Water Resources Investigation (TWRI) Book 9, chapter 4 A.

Prior to collection, each bottle was pre-contaminated three times with groundwater and emptied outside of the well. Because of well design, some samples were collected from wells in an acid-washed 500mL HDPE bottle attached to an extension to reach the pour point, then used to fill other sample bottles. In these cases, the 500mL bottle was also pre-contaminated three times with well water. To minimize degassing, unfiltered, unacidified samples were collected with zero headspace by filling the bottle to overflowing and then capping. The same preservation methods used for surface samples were followed for well samples.

Samples collected for DNA extraction and microbial community analysis were filtered through 0.2 micrometer sterile discs. Water was filtered until the filter became clogged, generally after filtering between 60 and 200 ml, depending on the suspended load of the spring water. The filter was subsequently preserved in a sucrose lysis buffer (SLB) (20 mM EDTA, 200 mM NaCl, 0.75 M sucrose, 50 mM Tris-HCl, pH 9.0) and refrigerated at -80ºC until DNA extraction. Waters collected for delta 13C analysis were unfiltered and preserved in the lab with HgCl2 following the methods of Torres et al., 2005.

Laboratory Procedures: In the laboratory, samples were refrigerated at 4°C in the dark until analysis. All waters were analyzed for major cations and metals on a Perkin Elemer ICP-OES and X series ICP-MS, respectively. Anions were measured on a Dionex DX-500 Ion Chromatograph and alkalinity was determined by End Point Titration. Stable isotopes of hydrogen, oxygen, and carbon were analyzed for select samples. Delta 18O and delta 13C were determined with a Finnigan MAT Delta Plus Mass Spectrometer, while delta D was analyzed with a Finnigan MAT 252 Mass Spectrometer. 87Sr/86Sr ratios were determined with a Neptune Multicollector ICP-MS.

QA/QC: Water sample charge balances were checked for analytical accuracy. All concentrations were measured after calibrating instruments with at least 3 standards.

Snakeweed (Gutierrezia sarothrae) Habitat Soils Data from the Sevilleta National Wildlife Refuge, New Mexico (1984)


In 1984, a research project was initiated on a relatively small disturbance patch just south of Deep Well. This disturbance was thought to be the result of an old praire dog town, probably dating back to when a nearby ranch was active, and a lot of old mammal mounds remained in the disturbed area. One of the things that made the disturbance patch particularily noticeable was the lush growth of snakeweed (Gutierrezia sarothrae) within the patch. This prompted the designation of the disturbance patch as the "snakeweed patch" or "Gutierrezia patch." In addition, there was an obvious increase in bare ground and a shift in vegetation composition across the patch boundary. The dominant vegetation was not consistent around the boundary, with a marked dominance of black grama on the west side of the plot and a blue/black grama mix on the other three sides. To obtain information on the cause and/or effect of this disturbance, a survey of the soil and vegetation was performed.

Core Areas: 

Data set ID: 


Additional Project roles: 



Data sources: 



Sample collection - The soil samples were collected using a hammer-driven soil corer. The barrel of the corer was fitted with a plastic sleeve that allowed extraction of the soil core generally intact. The  soil corer was driven to a depth of 50 cm and soils split ito 10 cm fractions. This data set contains data for only the top 30 cm.

Samples were taken along six 100 m transects. Four of these transects crossed the patch boundary on the four cardinal points. On these four transects the 0m sample was taken starting 50 m outside the boundary, the 50 m sample was taken at the patch boundary and the 100 m sample was taken 50 m into the patch. The other two transects formed a cross near the center of the patch.

Twenty-one cores were collected along each transect, with increased sampling intensity near the boundary. However, this data set contains data from only the 10 m intervals for a total of 11 samples.

Sample processing - Soil samples were kept in a refrigerator prior to analysis. Each sample was weighed and samples were well-mixed before analysis. Samples were sieved through 2mm screens to remove pebbles and roots. A sample of 25 g was added to a preweighed soil can. Samples were dried for 24 hours at 105 degrees C then cooled and then reweighed. This dry/wet moisture correction was used to calibrate weights for other samples. A 1 g sample was taken from the oven-dried samples and ashed at 500 degrees C for 2 hours and re-weighed after cooling. This provided a measure of organic content. A 12 g sample was weighed into a 125 ml plastic bottle and 100 ml of 2 N KCL added before the bottles were well-shaken. After standing for 24 hours, the KCL was decanted and the samples analyzed for NO3-N and NH4-N on a Technicon Autoanalyzer. Another 5 g sample was weighed into a centrifuge tube and extracted repeatedly with pH 7 ammonium acetate. These samples were brought up to 250 ml and analyzed for Ca, Mg and K using atomic absorption. Fifty g samples of soil were mixed and texture determined using the hydrometer method. Samples were mixed 2:1 with 0.001N CaCl2 and pH measured. From the oven-dried samples 1 g samples were digested using sulfuric acid using the Kjeldahl method. Samples were then brought up to 250 ml and analyzed on a Technicon Autoanalyzer for total nitrogen and phosphorous.

Coordinates (NAD27): 

End of

Transect Transect Latitude Longitude

North 0 34 21' 1.2" 106 41' 8.3"W

100 34 20' 57.9"N 106 41' 8.6"W

East 0 34 20' 47.0"N 106 41' 1.6"W

100 34 20' 46.5"N 106 41' 5.4"W

West 0 34 20' 53.7"N 106 41' 16.3"W

100 34 20' 53.7"N 106 41' 12.4"W

GCSA 0 34 20' 49.1"N 106 41' 9.2"W

100 34 20' 45.6"N 106 41' 9.2"W

GCSB 0 34 20' 47.1"N 106 41' 8.9"W

100 34 20' 47.4"N 106 41' 5.1"W


12/10/00 (DM) File created.2/10/2009. (DM) Metadata was updated and compiled.

Subscribe to RSS - ph