species composition

Extreme Drought in Grassland Ecosystems (EDGE) Seasonal Biomass and Seasonal and Annual NPP Data at the Sevilleta National Wildlife Refuge, New Mexico (2013- present)

Abstract: 

Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes.  While measures of both below- and above-ground biomass are important in estimating total NPP, this study focuses on above-ground net primary production (ANPP). Above-ground net primary production is the change in plant biomass, including loss to death and decomposition, over a given period of time. Volumetric measurements are made using vegetation data from permanent plots collected in SEV297, "Extreme Drought in Grassland Ecosystems (EDGE) Net Primary Production Quadrat Data" and regressions correlating biomass and volume constructed using seasonal harvest weights from SEV157, "Net Primary Productivity (NPP) Weight Data."

Data set ID: 

298

Core Areas: 

Additional Project roles: 

469

Keywords: 

Methods: 

Derivation of Biomass and Net primary Production:

Data from SEV297 and SEV157 are used to calculate the seasonal and annual production (i.e., biomass) of each species in each quadrat for a given year. Allometric equations derived from harvested samples of each species for each season are applied to the measured cover, height, and count of each species in each quadrat. This provides seasonal biomass for winter, spring, and fall.

Seasonal net primary production (NPP) is derived by subtracting the previous season's biomass from the biomass for the current season. For example, spring NPP is calculated by subtracting the winter weight from the spring weight for each species in a given quadrat. Negative differences are considered to be 0. Likewise, fall production is computed by subtracting spring biomass from fall biomass. Annual biomass is taken as the sum of spring and fall NPP.

Data sources: 

sev298_edgebiomass_20150818

Additional information: 

The bounding box coordinates for the corners of the polygon which encompasses the full EDGE black site are:NW: -106.729227  34.337913 Decimal DegreesNE: -106.728434  34.337937 Decimal DegreesSW: -106.729144  34.337298 Decimal DegreesSE: -106.728392  34.337310 Decimal DegreesEDGE blue:NW: -106.622610  34.342141 Decimal DegreesNE: -106.621689  34.342079 Decimal DegreesSW: -106.623365  34.341518 Decimal DegreesSE: -106.622711  34.341015 Decimal Degrees

Extreme Drought in Grassland Ecosystems (EDGE) Net Primary Production Quadrat Data at the Sevilleta National Wildlife Refuge, New Mexico (2012-present)

Abstract: 

EDGE is located at six grassland sites that encompass a range of ecosystems in the Central US - from desert grasslands to short-, mixed-, and tallgrass prairie. We envision EDGE as a research platform that will not only advance our understanding of patterns and mechanisms of ecosystem sensitivity to climate change, but also will benefit the broader scientific community. Identical infrastructure for manipulating growing season precipitation will be deployed at all sites. Within the relatively large treatment plots (36 m2), we will measure with comparable methods, a broad spectrum of ecological responses particularly related to the interaction between carbon fluxes (NPP, soil respiration) and species response traits, as well as environmental parameters that are critical for the integrated experiment-modeling framework, as well as for site-based analyses. By designing EDGE as a research platform open to the broader scientific community, with subplots in all replicates (n = 180 plots) set-aside for additional studies, and by making data available to the broader ecological community EDGE will have value beyond what we envision here. 

Data set ID: 

297

Core Areas: 

Additional Project roles: 

503

Keywords: 

Methods: 

Study Sites

The six sites were selected to capture the key environmental and ecological gradients of Central US grasslands and represent the major grassland ecosystem types (desert, shortgrass, mixedgrass, and tallgrass) of the region. Site selection criteria included: site characteristics (mean annual precipitation and temperature, dominant vegetation), access and site security, permission to build experimental infrastructure, participation in an existing or future network (e.g., LTER, NEON), and available site support and supporting data (e.g., LTER, USFWS or ARS).

Experimental Treatments and Plots

Our approach will be to impose a significant reduction in growing season precipitation (-66 % of ambient) over a 4-yr period. This is the equivalent of a ca. 50% reduction in annual precipitation because at all sites about 60-75% of annual precipitation falls in the growing season. We will impose this long-term drought either by reducing the size of each rainfall event (event size reduction, E) or by reducing the number of events (delayed rainfall treatment, D).

The control (C) treatment is included for comparison. At each site, the ambient (C) rainfall pattern will be reduced in two ways to impose a severe drought over a 4-yr period.

For the event size reduction treatment (E), each rainfall event will be passively reduced by a fixed proportion. Note that rain event number and the average number of days between events does not differ from ambient treatment.

For the reduced event number (D) treatment, shelters roofs will be removable to permit periods of complete rain exclusion alternating with periods of ambient rainfall inputs. Here, a + 10 mm rule is used to determine when roofs are on or off. When the cumulative precipitation amount in this D treatment falls 10 mm below the E treatment, the roofs are removed until the cumulative precipitation total is 10 mm greater than the E treatment. In this way, total precipitation amounts will be similar at the end of the growing season, but event number will be reduced and the average number of days between events increased, with no change in event size compared to the C treatment.

Plot Setup

At each site, we will establish replicate 6 x 6 m experimental plots (n = 10 per treatment, including the control treatment) in a relatively homogeneous area (similar soils, vegetation, etc.) that is representative of the overall site. Plots will be arrayed such that each treatment will be co-located in a single block (n=10 blocks per site), with each block located at least 5 m apart. 

The blocking will help control for environmental gradients if present. For each site, all plots within a block (including the control) will be located at least 2 m apart and trenched to 1-1.5 m and surrounded by a 6 mil plastic barrier to hydrologically isolate them from the adjacent soil, and each plot will be covered by the rainfall manipulation infrastructure. The 6 x 6 m plot size includes a 0.5 m external buffer to allow access to the plots and minimize edge effects associated with the infrastructure. The resulting 5 x 5 m area will be divided into 4 2.5 x 2.5 m subplots. One subplot will be designated for plant species composition sampling, two will for destructive sampling (ANPP, belowground productivity, soil sampling, etc.), and the fourth set aside for opportunistic studies.

Rainfall Manipulation Infrastructure

We will passively alter rainfall reaching the plots by using a version of a rainfall reduction shelter (Fig. 6) designed by Yahdjian and Sala (2002). Versions of these shelters (ranging from ~2 to 100 m2 ) are being used by the co-PIs at the Sevilleta, Konza Prairie and Shortgrass Steppe LTERs, as well as by many other ecologists, and thus, they are proven technology. The most significant environmental artifacts of these shelters are a 5- 10% reduction in light due to the acrylic Vshaped shingles and a ~ 20 cm edge effect (Yahdjian and Sala 2002). Shelters will consist of a steel frame that supports a roof. To cover the 36 m2 plots, the shelters will be constructed as modular 3 x 3 m units, with four units per plot. The roof of each modular unit will be slanted at 15° toward the edge of the plot, creating a 6 m long peak along the mid-line of the plot, with two lower 6 m long edges with gutters to move rainwater away from the plots. The peaked roof will facilitate run-off of rainfall and access to the plot, and the lower edge will be oriented to the prevailing wind direction to minimize blow-in. Average leaf canopy height varies among the desert/short-, midand tallgrass prairie sites (~0.2 to 0.6 m), and to maintain a consistent roof-to-canopy distance, peak height of the shelters will be 1.3, 1.55 and 1.8 m, with lower edges of the shelters at 0.5, 0.75 and 1.0 m, respectively, for the four grassland types. Construction of the shelters will begin in Yr 1 (after pretreatment measurements are taken) and treatments will be operational by the early spring of YR 2. For the ESR treatment, the roof will consist of clear acrylic (high light transmission, low yellowness index, UV transparent) v-shaped shingles arrayed at a density to passively reducing each rainfall event by ~66% (Fig. 6). For the REN treatment, the roof will consist of clear, corrugated polycarbonate (high light transmission, low yellowness index, UV transparent) to completely exclude rainfall. For both treatments, the roofs will be constructed to facilitate easy removal via a clamping system. The REN treatment roofs will then be manually deployed and removed at intermittent intervals (see Fig. 6 for more detail). Ambient plots will have a deer netting roof to achieve an average reduction in light similar to the rainfall reduction roofs.

Plant species composition, species traits, stem density, and light availability

In the subplot designated for species composition, we will establish a permanent 2 x 2 m sampling plots, which will be divided into four 1 x 1m quadrats in which canopy cover of each species will be visually estimated to the nearest 1%. For each site, these measures will be repeated at least twice during the growing season of each year to sample early and late season species. Maximum cover values of each species will be used to determine richness, diversity and dominance and changes in composition, species turnover, and species associations over time. 

Collecting the Data:

Net primary production data is collected twice each year, spring and fall, for both sites. Spring measurements are taken in April or May when shrubs and spring annuals have reached peak biomass. Fall measurements are taken in either September or October when summer annuals have reached peak biomass but prior to killing frosts. Winter measurements are taken in February before the onset of spring growth.

Vegetation data is collected on a palm top computer. A 1-m2 PVC-frame is placed over the fiberglass stakes that mark the diagonal corners of each quadrat. When measuring cover it is important to stay centered over the vegetation in the quadrat to prevent errors caused by angle of view (parallax). Each PVC-frame is divided into 100 squares with nylon string. The dimensions of each square are 10cm x 10cm and represent 1 percent of the total area.

The cover (area) and height of each individual live (green) vegetative unit that falls within the one square meter quadrat is measured. A vegetative unit consists of an individual size class (as defined by a unique cover and height) of a particular species within a quadrat. Cover is quantified by counting the number of 10cm x 10cm squares filled by each vegetative unit.

Niners and plexidecs are additional tools that help accurately determine the cover a vegetative unit. A niner is a small, hand-held PVC frame that can be used to measure canopies. Like the larger PVC frame it is divided into 10cm x 10cm squares, each square representing 1% of the total cover. However, there are only nine squares within the frame, hence the name “niner.” A plexidec can help determine the cover of vegetative units with covers less than 1%. Plexidecs are clear plastic squares that are held above vegetation. Each plexidec represents a cover of 0.5% and has smaller dimensions etched onto the surface that correspond to 0.01%, 0.05%, 0.1%, and 0.25% cover.

It is extremely important that cover and height measurements remain consistent over time to ensure that regressions based on this data remain valid. Field crew members should calibrate with each other to ensure that observer bias does not influence data collection.

Cover Measurements:

Grasses-To determine the cover of a grass clump, envision a perimeter around the central mass or densest portion of the plant, excluding individual long leaves, wispy ends, or more open upper regions of the plant. Live foliage is frequently mixed with dead foliage in grass clumps and this must be kept in mind during measurement as our goal is to measure only plant biomass for the current season. In general, recently dead foliage is yellow and dead foliage is gray. Within reason, try to include only yellow or green portions of the plant in cover measurement while excluding portions of the plant that are gray. This is particularly important for measurements made in the winter when there is little or no green foliage present. In winter, sometimes measurements will be based mainly on yellow foliage. Stoloniferous stems of grasses that are not rooted should be ignored. If a stem is rooted it should be recorded as a separate observation from the parent plant.

Forbs, shrubs and sub-shrubs (non-creosote)-The cover of forbs, shrubs and sub-shrubs is measured as the horizontal area of the plant. If the species is an annual it is acceptable to include the inflorescence in this measurement if it increases cover. If the species is a perennial, do not include the inflorescence as part of the cover measurement. Measure all foliage that was produced during the current season, including any recently dead (yellow) foliage. Avoid measuring gray foliage that died in a previous season.

Cacti-For cacti that consist of a series of pads or jointed stems (Opuntia phaecanthaOpuntia imbricata) measure the length and width of each pad to the nearest cm instead of cover and height. Cacti that occur as a dense ball/clump of stems (Opuntia leptocaulis) are measured using the same protocol as shrubs. Pincushion or hedgehog cacti (Escobaria viviparaSchlerocactus intertextusEchinocereus fendleri) that occur as single (or clustered) cylindrical stems are measured as a single cover.

Yuccas-Make separate observations for the leaves and caudex (thick basal stem). Break the observations into sections of leaves that are approximately the same height and record the cover as the perimeter around this group of leaf blades. The caudex is measured as a single cover. The thick leaves of yuccas make it difficult to make a cover measurement by centering yourself over the caudex of the plant. The cover of the caudex may be estimated by holding a niner next to it or using a tape measure to measure to approximate the area.

Height Measurements:

Height is recorded as a whole number in centimeters. All heights are vertical heights but they are not necessarily perpendicular to the ground if the ground is sloping.

Annual grasses and all forbs-Measure the height from the base of the plant to the top of the inflorescence (if present). Otherwise, measure to the top of the green foliage.

Perennial grasses-Measure the height from the base of the plant to the top of the live green foliage. Do not include the inflorescence in the height measurement. The presence of live green foliage may be difficult to see in the winter. Check carefully at the base of the plant for the presence of green foliage. If none is found it may be necessary to pull the leaf sheaths off of several plants outside the quadrat. From this you may be able to make some observations about where green foliage is likely to occur.

Perennial shrubs and sub-shrubs (non-creosote)-Measure the height from the base of the green foliage to the top of the green foliage, ignoring all bare stems. Do not measure to the ground unless the foliage reaches the ground.

Plants rooted outside but hanging into a quadrat-Do not measure the height from the ground. Measure only the height of the portion of the plant that is within the quadrat. 

Data sources: 

sev297_edgequadrat_20160815

Additional information: 

Additional Information on the personnel associated with the Data Collection / Data Processing

Nathan Gehres 2014-present; Michell Thomey 2012-2014

Core Site Grid Seasonal Biomass and Seasonal and Annual NPP Data at the Sevilleta National Wildlife Refuge, New Mexico (2013 - present)

Abstract: 

Begun in spring 2013, this project is part of a long-term study at the Sevilleta LTER measuring net primary production (NPP) across three distinct ecosystems: creosote-dominant shrubland (Site C), black grama-dominant grassland (Site G), and blue grama-dominant grassland (Site B). Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes.

Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and and foliage, over time and incoporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots within each site. A third sampling at Site C is performed in the winter. Volumetric measurements are made using vegetation data from permanent plots (SEV289, "Core Site Grid Quadrat Data for the Net Primary Production Study") and regressions correlating species biomass and volume constructed using seasonal harvest weights from SEV157, "Net Primary Productivity (NPP) Weight Data."

Data set ID: 

291

Core Areas: 

Additional Project roles: 

433
434
435
436

Keywords: 

Methods: 

Data Processing Techniques to Derive Biomass and NPP:

Data from SEV289 and SEV157 are used used to calculate seasonal and annual production of each species in each quadrat for a given year. Allometric equations derived from harvested samples of each species for each season are applied to the measured cover, height, and count of each species in each quadrat. This provides seasonal biomass for winter, spring, and fall.

Seasonal NPP is derived by subtracting the previous season's biomass from the biomass for the current season. For example, spring NPP is calculated by subtracting the winter weight from the spring weight for each species in a given quadrat. Negative differences are considered to be 0. Likewise, fall production is computed by subtracting spring biomass from fall biomass. Annual biomass is taken as the sum of spring and fall NPP.

Data sources: 

sev291_coregridbiomass_20150818

Additional information: 

Other researchers involved with collecting samples/data: Chandra Tucker (CAT; 04/2014-present), Megan McClung (MAM; 04/2013-present), Stephanie Baker (SRB; 2013-present), John Mulhouse (JMM; 2013).

Pinon-Juniper (Core Site) Seasonal Biomass and Seasonal and Annual NPP Data for the Net Primary Production Study at the Sevilleta National Wildlife Refuge, New Mexico (2003-present)

Abstract: 

This dataset contains pinon-juniper woodland biomass data and is part of a long-term study at the Sevilleta LTER measuring net primary production (NPP) across four distinct ecosystems: creosote-dominant shrubland (Site C, est. winter 1999), black grama-dominant grassland (Site G, est. winter 1999), blue grama-dominant grassland (Site B, est. winter 2002), and pinon-juniper woodland (Site P, est. winter 2003). Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes.

Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and and foliage, over time and incoporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots within each site. A third sampling at Site C is performed in the winter. Volumetric measurements are made using vegetation data from permanent plots (SEV278, "Pinon-Juniper (Core Site) Quadrat Data for the Net Primary Production Study") and regressions correlating species biomass and volume constructed using seasonal harvest weights from SEV157, "Net Primary Productivity (NPP) Weight Data."

Data set ID: 

290

Core Areas: 

Additional Project roles: 

482
483
484
485

Keywords: 

Methods: 

Data Processing Techniques to Derive Biomass and NPP:

Data from SEV278 and SEV157 are used used to calculate seasonal and annual production of each species in each quadrat for a given year. Allometric equations derived from harvested samples of each species for each season are applied to the measured cover, height, and count of each species in each quadrat. This provides seasonal biomass for winter, spring, and fall.

Seasonal NPP is derived by subtracting the previous season's biomass from the biomass for the current season. For example, spring NPP is calculated by subtracting the winter weight from the spring weight for each species in a given quadrat. Negative differences are considered to be 0. Likewise, fall production is computed by subtracting spring biomass from fall biomass. Annual biomass is taken as the sum of spring and fall NPP.

Data sources: 

289_npppinjbiomass_20150824

Additional information: 

Other researchers involved with collecting samples/data: Chandra Tucker (CAT; 04/2014-present),  Megan McClung (MAM; 04/2013-present), Stephanie Baker (SRB; 10/2010-present), John Mulhouse (JMM; 08/2009-06/2013), Amaris Swann (ALS; 08/2008-present), Maya Kapoor (MLK; 08/2003 - 01/2005, 05/2010 - 03/2011), Terri Koontz (TLK; 02/2000 - 08/2003, 08/2006 - 08/2010), Yang Xia (YX; 01/2005 - 03/2010), Karen Wetherill (KRW; 02/2000 - 08/2009);  Michell Thomey (MLT; 09/2005 - 08/2008), Heather Simpson (HLS; 08/2000 - 08/2002), Chris Roberts (CR; 09/2001- 08/2002), Shana Penington (SBP; 01/2000 - 08/2000), Seth Munson (SMM; 09/2002 - 06/2004), Jay McLeod (JRM; 01/2006 - 08/2006); Caleb Hickman (CRH; 09/2002 - 11/2004), Charity Hall (CLH; 01/2005 -  01/2006), Tessa Edelen (MTE, 08/2004 - 08/2005).

Mega-Monsoon Experiment (MegaME) Vegetation Sampling Data from the Sevilleta National Wildlife Refuge, New Mexico (2014 - present)

Abstract: 

Shrub encroachment is a global phenomenon. Both the causes and consequences of shrub encroachment vary regionally and globally. In the southwestern US a common native C3 shrub species, creosotebush, has invaded millions of hectares of arid and semi-arid C4-dominated grassland. At the Sevilleta LTER site, it appears that the grassland-shrubland ecotone is relatively stable, but infill by creosotebush continues to occur.  The consequences of shrub encroachment have been and continue to be carefully documented, but the ecological drivers of shrub encroachment in the southwestern US are not well known.

One key factor that may promote shrub encroachment is grazing by domestic livestock. However, multiple environmental drivers have changed over the 150 years during which shrub expansion has occurred through the southwestern US. Temperatures are warmer, atmospheric CO2 has increased, drought and rainy cycles have occurred, and grazing pressure has decreased. From our prior research we know that prolonged drought greatly reduces the abundance of native grasses while having limited impact on the abundance of creosotebush in the grass-shrub ecotone. So once established, creosotebush populations are persistent and resistant to climate cycles. We also know that creosotebush seedlings tend to appear primarily when rainfall during the summer monsoon is well above average. However, high rainfall years also stimulate the growth of the dominant grasses creating a competitive environment that may not favor seedling establishment and survival. The purpose of the Mega-Monsoon Experiment (MegaME) is twofold. First, this experiment will determine if high rainfall years coupled with (simulated) grazing promote the establishment and growth of creosotebush seedlings in the grassland-shrubland ecotone at Sevilleta, thus promoting infill and expansion of creosotebush into native grassland. Second, MegaME will determine if a sequence of wet summer monsoons will promote the establishment and growth of native C4 grasses in areas where creosotebush is now dominant, thus demonstrating that high rainfall and dispersal limitation prevent grassland expansion into creosotebush shrubland. 

Data set ID: 

259

Core Areas: 

Additional Project roles: 

499
500
501
502

Keywords: 

Methods: 

Data Collection 

Vegetation and soil measurements are taken in the spring and fall each year. Spring measurements are taken in May when spring annuals have reached peak biomass for the growing season. Fall measurements are taken in either September or October when summer annuals and all perennial species have reached peak biomass for the growing season, but prior to killing frosts. Vegetation cover is measured to assess growth and survival of grasses and shrubs. Bare soil and litter covers are also measured to monitor substrate changes that occur within the plots.

One meter2 vegetation quadrats are used to measure the cover of all plants present in each m2.   There are 10 quads in each plot, checkered along on side of the plot.  There is a tag on one rebar of each quad with the representative quad number.  


General vegetation measurements 

The cover is recorded for each species of live plant material inside the quadrat.  Vegetation measurements are taken in two layers: a ground level layer that includes all grasses, forbs, sub-shrubs, and a litter and bare soil, and a “shrub” layer that includes the canopy of Larrea tridentata.  The purpose of this approach is to include Larrea canopies, while allowing the cover values of the ground level layer to sum to approximately 100%. The dead plant covers are not included in the measurement, thus the total amount may not equal 100%.  It is assumed that the remaining cover missing from the 100% is a combination of dead plant material.

 The quadrat boundaries are delineated by the 1 m2 PVC-frame placed above the quadrat.   Each PVC-frame is divided into 100 squares with nylon string.  The dimensions of each square are 10cm x 10cm and represent 1 % of the total quadrat area or cover.  The cover and height of all individual plants of a species that fall within the 1m2 quadrat are measured.  Cover is quantified by counting the number of 10cm x 10cm squares intercepted by all individual plants of a particular species, and/or partial cover for individual plants < 1%.


Vegetation cover measurements 

Cover measurements are made by summing the live cover values for all individual plants of a given species that fall within an infinite vertical column that is defined by the inside edge of the PVC-frame. This includes vegetation that is rooted outside of the frame but has foliage that extends into the vertical column defined by the PVC-frame.  Again, cover is quantified by counting the number of 10cm x 10cm squares intercepted by each species.  Do not duplicate overlapping canopies, just record the total canopy cover on a horizontal plane when looking down on the quadrat through the grid.

Larger cover values will vary but the smallest cover value recorded should never be below 0.1%.  When dealing with individual plants that are < 1.00%, round the measurements to an increment of 0.1.  Cover values between 1.00% and 10.00% should be rounded to increments of 1.0, and values > 10.00% are rounded to increments of 5.

Creosote 

Larrea tridentata canopy  is estimated using the portion of the canopy that falls within the quadrat.  The canopy edge is defined by a straight gravity line from the canopy to the ground (i.e. imagine a piece of string with a weight on the end being moved around the canopy edge).  ForLarrea seedlings the code LSEED is used and is a separate measurement from the Larrea canopy measurements. The cover measurement for LSEED is simply a count of individuals, not actual cover, as it is assumed that they would have a cover of < 1.00%.

Grasses 

To determine the cover of a grass clump, envision a perimeter around the central mass or densest portion of the plant excluding individual long leaves, wispy ends or more open upper regions of the plant.  Live tissue is frequently mixed with dead tissue in grass clumps. 

Forbs 

The cover of forbs is the perimeter around the densest portion of the plant.    Measure all foliage that was produced during the current season.

Cacti and Yucca 

The cover of cacti and yucca is made by estimating a perimeter around the densest portion of the plant and recorded as a single cover.  For cacti that consist of a cluster of pads or jointed stems (i.e., Opuntia phaecantha, Opuntia imbricata), estimate an average perimeter around the series of plant parts and record a single coverage measurement.

Vines 

Vine cover (and some forbs) is often convoluted. Rather than attempt to estimate cover directly, take a frequency count of 10X10X10cm cubes that the vine is present in. 

Seedlings 

As with other vegetation measurements, the smallest cover value for seedlings should never be <0.1%.  If the value of a seedling’s cover is less, round up to 0.1%.


Non-Vegetation cover measurements 

Materials other than vegetation that are measured in the drought plots include soil and litter.  

Soil 

Measure the cover of the area occupied by abiotic substrates.  Cover is quantified by summing the number of 10cm x 10cm squares intercepted by abiotic substrates.  Cover values < 10.00% should be rounded to increments of  and cover values > 10.00% should be recorded in increments of 5.  If there is no soil in the quadrat, record “SOIL” in the species column for that quadrat and record a “0” for cover.

Litter 

Measure the cover of the area occupied by litter, which is unattached dead plant material.  Cover is quantified by summing the number of 10cm x 10cm squares intercepted by abiotic substrates. Cover values < 10.00% should be rounded to increments of 1 and cover values > 10.00% should be recorded in increments of 5.  If there is no litter in the quadrat, record “LITT” in the species column for that quadrat and record a “0” for cover.


Clipping grass at Ecotone Site 

After measurements are taken at the Ecotone Site, grass is clipped down to the soil and removed from half of the quads in each plot. The goal is to assess the impact of competition on successful creosote seedling germination. The following quads, # 2, 4, 6, 7, and 10, get clipped in every plot at the ecotone site.


Water Addition 

The watering schedule varies based on seasonal rainfall. Our goal is to increase average monsoon precipitation (150mm) by 50%, so we shoot for a total of 225mm on the plots during the summer monsoon.

Data sources: 

sev259_megame_20161222.csv

Additional information: 

Additional Information on the personnel associated with the Data Collection:

Stephanie Baker 2014-present

Megan McClung 2014-present

Chandra Tucker 2014-present

Konza Species Composition: Fire by Nitrogen Project

Abstract: 

The distribution, structure and function of mesic savanna grasslands are strongly driven by fire regimes, grazing by large herbivores, and their interactions. This research addresses a general question about our understanding of savanna grasslands globally: Is our knowledge of fire and grazing sufficiently general to enable us to make accurate predictions of how these ecosystems will respond to changes in these drivers over time? Some evidence suggests that fire and grazing influence savanna grassland structure and function differently in South Africa (SA) compared to North America (NA). These differences have been attributed to the contingent factors of greater biome age, longer evolutionary history with fire and grazing, reduced soil fertility, and greater diversity of plants and large herbivores in SA. An alternative hypothesis is that differences in methods and approaches used to study these systems have led to differing perspectives on the role of these drivers. If the impacts of shared ecosystem drivers truly differ between NA and SA, this calls into question the generality of our understanding of these ecosystems and our ability to forecast how changes in key drivers will affect savanna grasslands globally. Since 2006, an explicitly comparative research program has been conducted to determine the degree of convergence in ecosystem (productivity, N and C cycling) and plant community (composition, diversity, dynamics) responses to fire and grazing in SA and NA.

Thus far, initial support has been found for convergence at the ecosystem level and divergence at the community level in response to alterations in both fire regimes and grazing. However, there have also been two unexpected findings (1) the ways in which fire and grazing interact differed between NA and SA, and (2) the rate of change in communities when grazers were removed was much greater in NA than in SA. These unexpected findings raise a number of important new questions: (Q1) Will exclusion of grazing eventually affect community structure and composition across all fire regimes in SA? (Q2) Will these effects differ from those observed in NA? (Q3) What are the determinants of the different rates of community change? (Q4) How will these determinants influence future trajectories of change? (Q5) Will the different rates and trajectories of community change be mirrored by responses in ecosystem function over time? This project is based on a large herbivore exclusion study established within the context of long-term (25-50+ yr) experimental manipulations of fire frequency at the Konza Prairie Biological Station (KPBS) in NA and the Kruger National Park (KNP) in SA. The suite of core studies and measurements include plant community composition, ANPP, and herbivore abundance and distribution at both study sites to answer these research questions.

Data set ID: 

268

Core Areas: 

Keywords: 

Methods: 

We used comparable experimental designs and sampling procedures at both URF and KPBS. At URF we used three replicate plots (not hayed or mowed) that have been burned every 1 and 3 years in the spring, and those left unburned (N=9 plots). At KPBS, we established replicate plots in experimental watersheds burned every 1 and 4 years in the spring, and those left unburned (N=9 plots). Thus, the only difference in design between NA and SA was the intermediate burn frequency. In 2005 at both sites we established four 2x2m areas in each replicate of the 1-yr, 3-4 yr burned, and unburned plots (N=36 subplots). We then randomly selected two of the subplots for the fertilization treatment and the other two subplots served as controls (Fig. 1). Starting in 2006 at KPBS and 2007 at URF, we began adding 10 gN/m2/yr as NH4+NO3- to assess the interactive effects of fire frequency and nitrogen limitation on plant community composition, structure and dynamics.

Fig. 1. Experimental design and sampling for the proposed studies: A) the role of long-term fire regimes (without megaherbivores), B) the importance of grazing and grazing/fire interactions, and C) the role of megaherbivore diversity. Moveable exclosures (3/plot) will be used to estimate ANPP in the grazed plots.  N addition subplots (2 x 2 m) will be divided into 4 1 x 1 plots, with two designated for plant species composition sampling and the other two for destructive sampling. Soil samples will be collected from areas not designated for ANPP or plant composition sampling. Note that the same annually and infrequently burned plots at Kruger and Konza will be used in (B) and (C). In addition, similar plots will be established minus the N addition subplots in the 1-yr and 4-yr burned blocks of the Buffalo enclosure for (C). 

Each of the 2x2m subplots was divided into four 1x1m quadrats. Annually since 2005 (prior to nitrogen addition) canopy cover of each species rooted in each quadrat was visually estimated twice during the growing season to sample early and late season species. As a surrogate for aboveground production, we measured light availability at the end of the growing season above the canopy at the ground surface in each quadrat (N=4 per subplot) using a Decagon ceptometer. 

Net primary production measurements: Prior to the 2005 growing season we established plots (13.7 m by 18.3 m) in ungrazed areas burned annually, at 3–4-year intervals, and unburned (n  = 3 per fire treatment) at both KBPS and URF. Areas with trees or large shrubs were avoided as our main goal was to evaluate responses in the herbaceous plant community. ANPP was estimated from end-of-season harvests starting in 2005 (September for KBPS, April for URF). In 10, 0.1-m2 (20 cm by 50 cm) quadrats randomly located in each plot (n  = 30/treatment/site), we harvested the vegetation at ground level and separated it into grass, forb, and previous year’s dead biomass. Samples were dried at 60C to a constant weight. For annually burned plots, total biomass harvested represents ANPP. For the intermediate and unburned sites, we calculated ANPP by summing all but the previous year’s dead component.

To assess the impacts of fire on ANPP in grazed areas, we established herbivore exclusion treatments in KBPS in North America and KNP in South Africa. Herbivore exclosures in grazed areas in KPBS and KNP were erected prior to the 2006 growing season. The exclosures were 7 m in diameter, 2 m tall, and constructed of diamond mesh (5-cm diameter). Seven exclosures were established in each of three blocks of the three fire treatments— annually burned, intermediate burn (3- years for KNP or 4-years for KPBS), and unburned (n = 21 exclosures/treatment/site). As our focus was on ANPP responses of the herbaceous layer, exclosures were not located beneath trees or where dense shrub patches were present. Additionally, in the Satara region of KNP is a 900-ha permanent enclosure containing 80–90 adult African buffalo (S. caffer). This enclosure was erected in 2000 and was divided into six areas (100–200 ha each), with these burned on a rotational basis including plots burned annually and plots that were unburned. We used the unburned and annually burned areas in the buffalo enclosure to provide a direct comparison for determining the effects of a single-species large grazer in KNP and KPBS, and to assess the effects of large herbivore diversity at adjacent sites in KNP. Similar exclosures were built in the African buffalo enclosure at KNP. We placed 7 exclosures in the three blocks of each fire treatment (annually burned and unburned) resulting in 21 exclosures/treatment. We sampled ANPP by harvesting plant biomass from three 0.1 m2 quadrats per herbivore exclosure at the end of the growing season starting in 2006. 

Additional information: 

Data are collected twice each year at each site. Sample periods are equivalent to spring and late summer at each study site (December/January and March/April in South Africa, May and September in North America.

Where the Data were Collected: 

Ukulinga Research Farm, Pietermaritzburg, South Africa; Satara Region of Kruger National Park, South Africa; Konza Prairie Biological Station, North America

Additional Geographic Metadata:  

Ukulinga Research Farm (URF), South Africa. The URF of the University of KwaZulu-Natal is located in Pietermaritzburg, in southeastern South Africa (30o 24’ S, 29o 24’ E). The site is dominated by native perennial C4 grasses, such as Themeda triandra and Heteropogon contortus, that account for much of the herbaceous aboveground net primary production (ANPP). Mean annual precipitation is 790 mm, coming mostly as convective storms during summer (Oct-Apr). Summers are warm with a mean monthly maximum of 26.4oC in February, and winters are mild with occasional frost. Soils are fine-textured and derived from shales. There has been no grazing at this site for >60 years. Long-term experimental plots were established at URF in 1950 with the objective of determining the optimal fire and/or summer cutting regime to maximize hay production. The experiment is a randomized block (three replicates) split-plot design with four whole-plot haying treatments and 11 subplot fire or mowing treatments. Subplot sizes are 13.7 x 18.3 m. 

Kruger National Park (KNP), South Africa. The KNP is a 2 million ha protected area of savanna grassland that includes many of the large herbivores common to southern Africa (22º 25' to 25º 2 32' S, 30º 50' to 32º 2' E). The extant abundance and grazing intensity of herbivores in KNP is considered moderate for regional savanna grasslands. In the south-central region of KNP where our research takes place, average rainfall is 537 mm with most falling during the growing season (Oct-Apr). The dormant season is mild, dry and frost free, and summers are warm with mean monthly maximum air temperature of 28.9oC in January. Because of the importance of fire in savanna grassland ecosystems, the Experimental Burn Plot (EBP) experiment was initiated in 1954 to examine the effects of fire frequency (control-no fire, 1-, 2-, 3-, 4- and 6-yr return interval) and season [early spring (Aug), spring (Oct), mid-summer (Dec), late summer (Feb), and fall (Apr)] on vegetation communities in the park. Four blocks of 12 plots (two were later split for the 4- and 6-yr trts), each ~7 ha (370 x 180 m) in size, were established in four primary vegetation types covering the two major soil types (granites and basalts) and spanning the precipitation gradient in the park. Each plot has 50+ years of known fire history, and native herbivores have had unrestricted access, thus fire and grazing effects are combined. This research focuses on the EBPs located near Satara where precipitation, soil type, and the mix of herbaceous and woody plants are similar to KPBS. Vegetation on the blocks is co-dominated by C4 grasses, such as Bothriochloa radicans, Panicum coloratum and Digiteria eriantha, and woody plants, such as Acacia nigrescens and Sclerocarya birrea.  Soils are fine-textured and derived from basalts. Adjacent to one of the Satara blocks is the Cape buffalo enclosure, erected in 2000 for veterinary purposes. The 200 ha permanent enclosure contains 65-80 animals and is divided into 4 blocks burned on a rotational basis. The grazing intensity inside is comparable to the moderate levels imposed in the park and at KPBS. Two blocks are burned annually while others are burned infrequently (approximately once every 4-yr). 

Konza Prairie Biological Station (KPBS), North America. The KPBS is a 3,487 ha savanna grassland in northeastern Kansas, USA (39o 05’ N, 96o 35’ W) dominated by native perennial C4 grasses such as Andropogon gerardii and Sorghastrum nutans that account for the majority of ANPP. Scattered shrub and tree species include Cornus drummondii, Gleditsia triacanthos, and Prunus spp. Numerous sub-dominant grasses and forbs contribute to the floristic diversity of the site. The climate is continental, with mean July air temperature of 27°C. Annual precipitation is ca. 820 mm/year, with 75% falling as rain during the Apr-Oct growing season. Soils are fine textured, silty clay loams derived from limestone and shales. KPBS includes fully replicated watershed-level fire and fire/grazing treatments, in place since 1977 and 1987, respectively.  Replicate watersheds (mean size ~60ha) are burned at 1-, 2-, 4-, 10- and 20-yr intervals, mainly in April, to encompass a range of likely natural fire frequencies and management practices. A subset of watersheds has not been grazed for more than 30 years. To address the role of native grazers and fire/grazing interactions, bison (~260 individuals) were reintroduced to KPBS in a 1000-ha fenced area that includes replicate watersheds burned in the spring at 1-, 2-, 4- and 20-year intervals. The overall grazing intensity is considered moderate.

Study Area 1:  

Study Area Name:  Ukulinga Research Farm

Study Area Location: Near Pietermaritzburg, South Africa 

Elevation: 840 m above sea level

Landform: Colluvium fan

Geology: Marine shales and dolerite colluvium

Soils: Dystric leptosols, Chromic luvisols, Haplic plinthisols

Vegetation: Native grassland

Climate: Mean annual precipitation is 844 mm, Mean annual temperature 17.6C

Site history: Ungrazed since 1950

Single Point: 29o 40’ S / 30o 20’ E

Study Area 2:  Kruger National Park, South Africa

Study Area Name: Satara Experimental Burn Plots and Cape Buffalo Exclosure

Study Area Location: Near Satara rest camp

Elevation:  240-320 meters above sea level

Landform:  Level Upland

Geology: Basalts

Soils: Rhodic nitisols, Haplic luvisols, Leptic phaeozems

Vegetation: Native grassland

Climate: Mean annual precipitation 544 mm; mean annual temperature 21.2–23.3C

Site history: Grazed by native herbivores

Single Point: 23–25o S /30-31o E

   

Study Area 3:  Konza Prairie Biological Station

Study Area Name: Konza Prairie

Study Area Location: Watersheds N20B, N4D, N1B, N4B; 1D, 4F, 20B

Elevation: 320-444 meters above sea level

Landform: Alluvial terrace

Geology: Cherty limestone and shale

Soils: Udic argiustolls

Vegetation: Native grassland

Climate: Mean annual precipitation 835 mm; mean annual temperature 12.7C

Site history: Ungrazed watersheds (since 1971), watersheds grazed by native herbivores (since 1987)

Single Point: 39o 05.48’ N / 96o 34.12’ W

Ukulinga Species Composition: Fire by Nitrogen Project

Abstract: 

The distribution, structure and function of mesic savanna grasslands are strongly driven by fire regimes, grazing by large herbivores, and their interactions. This research addresses a general question about our understanding of savanna grasslands globally: Is our knowledge of fire and grazing sufficiently general to enable us to make accurate predictions of how these ecosystems will respond to changes in these drivers over time? Some evidence suggests that fire and grazing influence savanna grassland structure and function differently in South Africa (SA) compared to North America (NA). These differences have been attributed to the contingent factors of greater biome age, longer evolutionary history with fire and grazing, reduced soil fertility, and greater diversity of plants and large herbivores in SA. An alternative hypothesis is that differences in methods and approaches used to study these systems have led to differing perspectives on the role of these drivers. If the impacts of shared ecosystem drivers truly differ between NA and SA, this calls into question the generality of our understanding of these ecosystems and our ability to forecast how changes in key drivers will affect savanna grasslands globally. Since 2006, an explicitly comparative research program has been conducted to determine the degree of convergence in ecosystem (productivity, N and C cycling) and plant community (composition, diversity, dynamics) responses to fire and grazing in SA and NA.

Thus far, initial support has been found for convergence at the ecosystem level and divergence at the community level in response to alterations in both fire regimes and grazing. However, there have also been two unexpected findings (1) the ways in which fire and grazing interact differed between NA and SA, and (2) the rate of change in communities when grazers were removed was much greater in NA than in SA. These unexpected findings raise a number of important new questions: (Q1) Will exclusion of grazing eventually affect community structure and composition across all fire regimes in SA? (Q2) Will these effects differ from those observed in NA? (Q3) What are the determinants of the different rates of community change? (Q4) How will these determinants influence future trajectories of change? (Q5) Will the different rates and trajectories of community change be mirrored by responses in ecosystem function over time? This project is based on a large herbivore exclusion study established within the context of long-term (25-50+ yr) experimental manipulations of fire frequency at the Konza Prairie Biological Station (KPBS) in NA and the Kruger National Park (KNP) in SA. The suite of core studies and measurements include plant community composition, ANPP, and herbivore abundance and distribution at both study sites to answer these research questions.

Data set ID: 

263

Core Areas: 

Keywords: 

Methods: 

Konza-Ukulinga fire by nitrogen project: We used comparable experimental designs and sampling procedures at both URF and KPBS (Figure 1). At URF we used three replicate plots (not hayed or mowed) that have been burned every 1 and 3 years in the spring, and those left unburned (N=9 plots). At KPBS, we established replicate plots in experimental watersheds burned every 1 and 4 years in the spring, and those left unburned (N=9 plots). Thus, the only difference in design between NA and SA was the intermediate burn frequency. In 2005 at both sites we established four 2x2m areas in each replicate of the 1-yr, 3-4 yr burned, and unburned plots (N=36 subplots). We then randomly selected two of the subplots for the fertilization treatment and the other two subplots served as controls (Fig. 1). Starting in 2006 at KPBS and 2007 at URF, we began adding 10 gN/m2/yr as NH4+NO3- to assess the interactive effects of fire frequency and nitrogen limitation on plant community composition, structure and dynamics.

Fig. 1. Experimental design and sampling for the proposed studies: A) the role of long-term fire regimes (without megaherbivores), B) the importance of grazing and grazing/fire interactions, and C) the role of megaherbivore diversity. Moveable exclosures (3/plot) will be used to estimate ANPP in the grazed plots.  N addition subplots (2 x 2 m) will be divided into 4 1 x 1 plots, with two designated for plant species composition sampling and the other two for destructive sampling. Soil samples will be collected from areas not designated for ANPP or plant composition sampling. Note that the same annually and infrequently burned plots at Kruger and Konza will be used in (B) and (C). In addition, similar plots will be established minus the N addition subplots in the 1-yr and 4-yr burned blocks of the Buffalo enclosure for (C). 

Each of the 2x2m subplots was divided into four 1x1m quadrats. Annually since 2005 (prior to nitrogen addition) canopy cover of each species rooted in each quadrat was visually estimated twice during the growing season to sample early and late season species. As a surrogate for aboveground production, we measured light availability at the end of the growing season above the canopy at the ground surface in each quadrat (N=4 per subplot) using a Decagon ceptometer. 

Konza-Kruger fire by grazing project: For this study, we are utilizing the long-term experiments at KPBS and KNP in which native megaherbivore grazers are present and fire frequency is directly manipulated. To assess the effects of grazing and fire-grazing interactions, we constructed seven sets of permanent exclosures and adjacent control plots in three blocks at both sites. The exclosures and matching paired open plots were established in 2005 in the Satara EBPs that are burned every 1 and 3 years in the spring or left unburned and at KPBS in watersheds that are burned every 1 and 4 years or left unburned. (N=63 exclosures/site; Fig. 1). Within each exclosure and paired open plot, we sample plant community composition and light availability in permanent 2x2 m subplots. We collect ANPP at the end of each growing season from each exclosure, and throughout the growing season in grazed areas adjacent to the unexclosed plots using 1x1 m moveable exclosures (Fig. 1).

Net primary production measurements: Prior to the 2005 growing season we established plots (13.7 m by 18.3 m) in ungrazed areas burned annually, at 3–4-year intervals, and unburned (n  = 3 per fire treatment) at both KBPS and URF. Areas with trees or large shrubs were avoided as our main goal was to evaluate responses in the herbaceous plant community. ANPP was estimated from end-of-season harvests starting in 2005 (September for KBPS, April for URF). In 10, 0.1-m2 (20 cm by 50 cm) quadrats randomly located in each plot (n  = 30/treatment/site), we harvested the vegetation at ground level and separated it into grass, forb, and previous year’s dead biomass. Samples were dried at 60C to a constant weight. For annually burned plots, total biomass harvested represents ANPP. For the intermediate and unburned sites, we calculated ANPP by summing all but the previous year’s dead component.

To assess the impacts of fire on ANPP in grazed areas, we established herbivore exclusion treatments in KBPS in North America and KNP in South Africa. Herbivore exclosures in grazed areas in KPBS and KNP were erected prior to the 2006 growing season. The exclosures were 7 m in diameter, 2 m tall, and constructed of diamond mesh (5-cm diameter). Seven exclosures were established in each of three blocks of the three fire treatments— annually burned, intermediate burn (3- years for KNP or 4-years for KPBS), and unburned (n = 21 exclosures/treatment/site). As our focus was on ANPP responses of the herbaceous layer, exclosures were not located beneath trees or where dense shrub patches were present. Additionally, in the Satara region of KNP is a 900-ha permanent enclosure containing 80–90 adult African buffalo (S. caffer). This enclosure was erected in 2000 and was divided into six areas (100–200 ha each), with these burned on a rotational basis including plots burned annually and plots that were unburned. We used the unburned and annually burned areas in the buffalo enclosure to provide a direct comparison for determining the effects of a single-species large grazer in KNP and KPBS, and to assess the effects of large herbivore diversity at adjacent sites in KNP. Similar exclosures were built in the African buffalo enclosure at KNP. We placed 7 exclosures in the three blocks of each fire treatment (annually burned and unburned) resulting in 21 exclosures/treatment. We sampled ANPP by harvesting plant biomass from three 0.1 m2 quadrats per herbivore exclosure at the end of the growing season starting in 2006. 

Additional information: 

Data are collected twice each year at each site. Sample periods are equivalent to spring and late summer at each study site (December/January and March/April in South Africa, May and September in North America.

Where the Data were Collected: 

Ukulinga Research Farm, Pietermaritzburg, South Africa; Satara Region of Kruger National Park, South Africa; Konza Prairie Biological Station, North America

Additional Geographic Metadata:  

Ukulinga Research Farm (URF), South Africa. The URF of the University of KwaZulu-Natal is located in Pietermaritzburg, in southeastern South Africa (30o 24’ S, 29o 24’ E). The site is dominated by native perennial C4 grasses, such as Themeda triandra and Heteropogon contortus, that account for much of the herbaceous aboveground net primary production (ANPP). Mean annual precipitation is 790 mm, coming mostly as convective storms during summer (Oct-Apr). Summers are warm with a mean monthly maximum of 26.4oC in February, and winters are mild with occasional frost. Soils are fine-textured and derived from shales. There has been no grazing at this site for >60 years. Long-term experimental plots were established at URF in 1950 with the objective of determining the optimal fire and/or summer cutting regime to maximize hay production. The experiment is a randomized block (three replicates) split-plot design with four whole-plot haying treatments and 11 subplot fire or mowing treatments. Subplot sizes are 13.7 x 18.3 m. 

Kruger National Park (KNP), South Africa. The KNP is a 2 million ha protected area of savanna grassland that includes many of the large herbivores common to southern Africa (22º 25' to 25º 2 32' S, 30º 50' to 32º 2' E). The extant abundance and grazing intensity of herbivores in KNP is considered moderate for regional savanna grasslands. In the south-central region of KNP where our research takes place, average rainfall is 537 mm with most falling during the growing season (Oct-Apr). The dormant season is mild, dry and frost free, and summers are warm with mean monthly maximum air temperature of 28.9oC in January. Because of the importance of fire in savanna grassland ecosystems, the Experimental Burn Plot (EBP) experiment was initiated in 1954 to examine the effects of fire frequency (control-no fire, 1-, 2-, 3-, 4- and 6-yr return interval) and season [early spring (Aug), spring (Oct), mid-summer (Dec), late summer (Feb), and fall (Apr)] on vegetation communities in the park. Four blocks of 12 plots (two were later split for the 4- and 6-yr trts), each ~7 ha (370 x 180 m) in size, were established in four primary vegetation types covering the two major soil types (granites and basalts) and spanning the precipitation gradient in the park. Each plot has 50+ years of known fire history, and native herbivores have had unrestricted access, thus fire and grazing effects are combined. This research focuses on the EBPs located near Satara where precipitation, soil type, and the mix of herbaceous and woody plants are similar to KPBS. Vegetation on the blocks is co-dominated by C4 grasses, such as Bothriochloa radicans, Panicum coloratum and Digiteria eriantha, and woody plants, such as Acacia nigrescens and Sclerocarya birrea.  Soils are fine-textured and derived from basalts. Adjacent to one of the Satara blocks is the Cape buffalo enclosure, erected in 2000 for veterinary purposes. The 200 ha permanent enclosure contains 65-80 animals and is divided into 4 blocks burned on a rotational basis. The grazing intensity inside is comparable to the moderate levels imposed in the park and at KPBS. Two blocks are burned annually while others are burned infrequently (approximately once every 4-yr). 

Konza Prairie Biological Station (KPBS), North America. The KPBS is a 3,487 ha savanna grassland in northeastern Kansas, USA (39o 05’ N, 96o 35’ W) dominated by native perennial C4 grasses such as Andropogon gerardii and Sorghastrum nutans that account for the majority of ANPP. Scattered shrub and tree species include Cornus drummondii, Gleditsia triacanthos, and Prunus spp. Numerous sub-dominant grasses and forbs contribute to the floristic diversity of the site. The climate is continental, with mean July air temperature of 27°C. Annual precipitation is ca. 820 mm/year, with 75% falling as rain during the Apr-Oct growing season. Soils are fine textured, silty clay loams derived from limestone and shales. KPBS includes fully replicated watershed-level fire and fire/grazing treatments, in place since 1977 and 1987, respectively.  Replicate watersheds (mean size ~60ha) are burned at 1-, 2-, 4-, 10- and 20-yr intervals, mainly in April, to encompass a range of likely natural fire frequencies and management practices. A subset of watersheds has not been grazed for more than 30 years. To address the role of native grazers and fire/grazing interactions, bison (~260 individuals) were reintroduced to KPBS in a 1000-ha fenced area that includes replicate watersheds burned in the spring at 1-, 2-, 4- and 20-year intervals. The overall grazing intensity is considered moderate.

Study Area 1:  

Study Area Name:  Ukulinga Research Farm

Study Area Location: Near Pietermaritzburg, South Africa 

Elevation: 840 m above sea level

Landform: Colluvium fan

Geology: Marine shales and dolerite colluvium

Soils: Dystric leptosols, Chromic luvisols, Haplic plinthisols

Vegetation: Native grassland

Climate: Mean annual precipitation is 844 mm, Mean annual temperature 17.6C

Site history: Ungrazed since 1950

Single Point: 29o 40’ S / 30o 20’ E

Study Area 2:  Kruger National Park, South Africa

Study Area Name: Satara Experimental Burn Plots and Cape Buffalo Exclosure

Study Area Location: Near Satara rest camp

Elevation:  240-320 meters above sea level

Landform:  Level Upland

Geology: Basalts

Soils: Rhodic nitisols, Haplic luvisols, Leptic phaeozems

Vegetation: Native grassland

Climate: Mean annual precipitation 544 mm; mean annual temperature 21.2–23.3C

Site history: Grazed by native herbivores

Single Point: 23–25o S /30-31o E

   

Study Area 3:  Konza Prairie Biological Station

Study Area Name: Konza Prairie

Study Area Location: Watersheds N20B, N4D, N1B, N4B; 1D, 4F, 20B

Elevation: 320-444 meters above sea level

Landform: Alluvial terrace

Geology: Cherty limestone and shale

Soils: Udic argiustolls

Vegetation: Native grassland

Climate: Mean annual precipitation 835 mm; mean annual temperature 12.7C

Site history: Ungrazed watersheds (since 1971), watersheds grazed by native herbivores (since 1987)

Single Point: 39o 05.48’ N / 96o 34.12’ W

Plant phenology or life-history pattern changes seasonally as plants grow, mature, flower, and produce fruit and seeds. Plant phenology follows seasonal patterns, yet annual variation may occur due to annual differences in the timing of rainfall and ambient temperature shifts. Foliage growth and fruit and seed production are important aspects of plant population dynamics and food resource availability for animals.

Ground Arthropod Community Survey in Grassland, Shrubland, and Woodland at the Sevilleta National Wildlife Refuge, New Mexico (1992-2004)

Abstract: 

This data set contains records for the numbers of selected groups of ground-dwelling arthropod species and individuals collected from pitfall traps at 4 sites on the Sevilleta NWR, including creotostebush shrubland, both black and blue grama grasslands, and a pinyon/juniper woodland. Data collections begin in May of 1989, and are represented by subsequent sample collections every 2 months. One site (Goat Draw/Cerro Montosa) was discontinued in 2001, and a new site (Blue Grama) was initiated . Only three sites, creosotebush, black grama, and blue grama were continued between 2001-2004.

Core Areas: 

Data set ID: 

29

Additional Project roles: 

332
333
334
335

Keywords: 

Purpose: 

To monitor the species composition and relative abundance's of select ground dwelling arthropod taxa and trophic groups from principal long-term study sites/environments in relation to climate change and plant production. 

Data sources: 

sev029_arthropop_02162009

Methods: 

Experimental Design

Arthropods have been collected from four subjectively chosen sites on the Sevilleta National Wildlife Refuge (SNWR), representing the following habitat types:  pinyon-juniper (elev. 2195 m), black grama grassland, blue grama grassland, and creosotebush shrubland (elev. ~1400 m for all three). At each of the four sites there were 30 traps arranged in five replicate lines with six traps per line.  Each line was located outside a mammal trapping web, except at Goat Draw, where mammal trapping webs were installed three years after the arthropod traps.  In 1995 Robert Parmenter and Sandra Brantley decided to reduce the number of traps by half.  Comparative statistical tests run with data from 15 traps showed no difference in mean abundances of dominant species compared to tests with 30 traps. The interannual variability is high and it is hoped that the long-term aspect of the monitoring will produce clearer patterns than intensive sampling over a short period has done.  Traps 1, 3 and 5 were left and traps 2, 4 and 6 were removed.  The decision was also made to process samples from only the odd-numbered traps beginning with the 1993 samples. The experimental design was intended to provide data for long-term monitoring of ground arthropods in relation to climate and plant production. The traps within each trap line are subsamples, and data from those should be summed or averaged for a single value per line, per sample period. The lines are intended to serve as replicate samples for each habitat site, however, they were not randomly located. The lines were located to provide a systematic array with trap lines approximately 200 meters from each other on the landscape.

Field Methods

During a collection period the contents of each trap are strained out of the glycol so that it can be reused.  Glycol is replenished as needed to keep the cups about half full.  Arthropods are transferred from the strainers to glass vials containing site labels.  The contents of each trap are stored in a separate vial. Trap condition forms are filled out at the time of collection and kept with the samples. Any traps that are damaged or not functioning are re-set.

Sampling Design

Arthropods are collected in pitfall traps, made of a 15 oz. can (11 cm tall and 7.5 cm in diameter) dug into the ground so that the opening of the can is flush with the ground. A screen apron was fitted around the top of the can to prevent rodent digging. Plastic 10 oz. cups about half-full of propylene glycol (ethylene glycol prior to March 1994) are inserted in the can.  The glycol is a preservative; no live pitfall trapping of arthropods is done.  The traps are covered by raised ceramic lids, 15 cm x 15 cm in size.  The traps remain open all year, and samples are collected everly two months during the week of the 15th day of each months, for the months: February, April, Jun, August, October, and December.During a collection period the contents of each trap are strained out of the glycol so that it can be reused, using standard hand-held metal screen kitchen strainers approximately 3 inches diameter.  Glycol is replenished as needed to keep the cups about half full.  Arthropods are transferred from the strainers to glass vials containing site labels.  The contents of each trap are stored in a separate vial. Trap condition forms are filled out at the time of collection and kept with  the samples.

Laboratory Procedures

Specimens are stored in 70 % ethanol. Specimens are brought back to the UNM Museum of Southwestern Biology (MSB) wet lab for processing. Sample sorting, arthropod identification, and data tabulation are performed only by individuals trained as entomologists, or entomologically experienced graduate students trained in arthropod identification specifically for this project.  Individual arthropods are identified to morphospecies and counted.  Classifications generally follow Nomina Insecta Nearctica: a checklist of the insects of North America, Volumes 1-4, however, taxonomic levels above family follow Borror, DeLong and Triplehorn's An Introduction to Entomology, 5th edition.  Higher classification for Orthopteroids follow Arnett, 2000 (per DLC). And classification of Aranae follows Roth's Spider Genera of North America, 2nd and 3rd editions. The species code, number of individuals, site name and date of  collection are entered on a data sheet. After processing, all the samples from one site and date are pooled for long-term storage in sealed jars containing 70% ethanol, at the UNM Biology Field Station, located at the Sevilleta NWR.  Detailed procedures for sorting and identifying the arthropods are available from the Sevilleta data manager (data-use@sevilleta.unm.edu).  Reference collections are maintained at the Sevilleta Field Station and at the UNM Museum of Southwestern Biology Division of Arthropods. Voucher specimens are housed in the UNM MSB Division of Arthropods. 

Ground arthropod species in the following taxonomic groups are collected, counted and identified to morphospecies:-orthopterans, including grasshoppers, field crickets and camel crickets-blattarians, sand cockroaches-mantodeans, only ground mantids-phasmatodeans, walkingsticks-hemipterans, selected taxa only: lygaeids, alydids, one genus of mirid, thyreocorids, cydnids-coleopterans-microcoryphians, bristletails-chilopods-diplopods -isopods-arachnids, including spiders, scorpions, solpugids, uropygids, opiliones.

Specimens are pinned or placed in 70 % ETOH, labeled, and added to the LTER collection or to the UNM Division of Arthropods collection as needed.  If the specimens are not needed they are kept in alcohol storage and housed at the Sevilleta Field Station. See: /sevilleta/export/db/work/insect/specieslists/sevrefcoll for a list of specimens vouchered by the MSB. The focus of the pitfall collections is on the adult stage, but nymphs of orthopteroids and hemipterans and immature stages of arachnids are identified to genus or species if possible.  If not, these groups have species i.d. numbers for nymphal or immature stages. Larval beetles are not counted.  The aleocharine staphylinid species are grouped together under species number Co Sta 001 088.

Maintenance: 

January 2009Combined all data from 1992-2004. QA/QC'd data from 2001-2004 in excel using a filter and checking data line by line. All data were then imported into Navicat using the import wizard.

Data from 1989-1991 were removed and stored elsewhere. Contact data manager for data. --A.Swann

Additional information: 


Additional Information on the Data Collection Period

Field collections are made every even-numberedmonth as close to the 15th as possible. 

This study/data set is a subset of the original larger scale Sevilleta LTER data set #: SEV0029; "Arthropod Populations". The number of arthropod taxa included in this data set ("Sevilleta Ground Arthropods") has been reduced to those taxa that are appropriately sampled by pitfall traps, and those taxa or taxonmic ranks that can be easily identified and tabulated by expert technical staff. The number of study sites also was reduced from seven to four for this data set. Associated data sets include climate data from representative Sevilleta LTER meterological stations, and plant production data from Sevilleta LTER above ground net primary production plots, located on or near the arthropod pitfall trap sites.

Small Mammal Mark-Recapture Population Dynamics at Core Research Sites at the Sevilleta National Wildlife Refuge, New Mexico (1989 - present)

Abstract: 

This file contains mark/recapture trapping data collected from 1989-2012 on permanently established web trapping arrays at 8 sites on the Sevilleta NWR. At each site 3 trapping webs are sampled for 3 consecutive nights in spring and fall. Not all sites have been trapped for the entire period. Each trapping web consists of 145 rebar stakes numbered from 1-145. There are 148 traps deployed on each web: 12 along each of 12 spokes radiating out from a central point (stake #145) plus 4 traps at the center point. The trapping sites are representative of Chihuahuan Desert Grassland, Chihuahuan Desert Shrubland, Pinyon-Juniper Woodland, Juniper Savanna, Plains-Mesa Sand Scrub and Blue Grama Grassland.

Data set ID: 

8

Core Areas: 

Additional Project roles: 

517
518

Keywords: 

Methods: 

Sampling Design
Permanent capture-mark-release trapping webs were used to estimate density (number of animals per unit area) of each rodent species at each site. The method makes use of concepts from distance sampling, i.e., point counts or line-intercept techniques. The method makes no attempts to model capture-history data, therefore it was not necessary to follow individuals through time (between sessions). Distance sampling methods allow for sighting or detection (capture) probabilities to decrease with increasing distance from the point or line. The modeling of detection probability as a function of distance forms the basis for estimation. Trapping webs were designed to provide a gradient of capture probabilities, decreasing with distance from the web center. Density estimation from the trapping web was based on three assumptions:1. All animals located at the center of the web were caught with probability 1.0; 2. Individuals did not move preferentially toward or away from the web center; 3. Distances from the web center to each trap station were measured accurately. Each web consisted of 12 trap lines radiating around a center station, each line with 12 permanently-marked trap stations. In order to increase the odds of capturing any animals inhabiting the center of a web, the center station had four traps, each pointing in a cardinal direction, and the first four stations of each trap line were spaced only 5 m apart, providing a trap saturation effect. The remaining eight stations in a trap line were spaced at 10 m intervals. The web thus established a series of concentric rings of traps. Traps in the ring nearest the web center are close together, while the distances separating traps that form a particular ring increase with increasing distance of the ring from the web center. The idea is that the web configuration produces a gradient in trap density and, therefore, in the probability of capture. Three randomly distributed trapping webs were constructed at each site. The perimeters of webs were placed at least 100 m apart in order to minimize homerange overlap for individuals captured in the outer portion of neighboring webs.

Measurement Techniques

Each site containing three webs was sampled for three consecutive nights during spring (in mid May or early June) and summer (in mid July or early August for years 1989 to 1993, then mid September to early October for years 1994 through 2000). In that rodent populations were not sampled monthly over the study period, there is no certainly that either spring or summer trapping times actually captured annual population highs or lows. Based on reproductive data in the literature, an assumption was made that sampling times chosen represent periods of the year when rodents have undergone, and would register, significant seasonal change in density. During each trapping session, one Sherman live trap (model XLF15 or SFAL, H. B. Sherman Traps, Tallahassee, FL) was placed, baited with rolled oats, and set at each permanent, numbered station (four in the center) on each web, for a total 444 traps over three webs. Traps were checked at dawn each day, closed during the day, and reset just before dusk. Habitat, trap station number, species, sex, age (adult or juvenile), mass, body measurements (total length, tail length, hind foot length, ear length), and reproductive condition (males: scrotal or non-scrotal; females: lactating, vaginal or pregnant) were recorded for each initial capture of an individual. Each animal was marked on the belly with a permanent ink felt pen in order to distinguish it from other individuals during the same trapping session. The trap station number for an initial capture related to a particular trapping ring on a web and, therefore, to a particular distance from the center of the web. The area sampled by a ring of traps was computed based on circular zones whose limits are defined by points halfway between adjacent traps along trap lines; an additional 25 m radius was added to the outer ring of traps in order to account for homerange size of individuals caught on the outer ring.

Analytical Procedures
Area trapped and number of individuals caught for each ring of traps was the basis for estimating the probability density function of the area sampled. The program DISTANCE produced the estimators used to calculate density. Where sample size for a particular species and web was less than an arbitrarily chosen n=10, the number of individuals captured during that session was simply divided into the area of the web plus the additional 25 m radius (4.9087 ha). This dataset includes only the raw capture data.

Data sources: 

sev008_rodentpopns_20161027

Instrumentation: 

 

Sherman live traps: model XLF15 or SFAL, H. B. Sherman Traps, Tallahassee, FL

Maintenance: 

Trap sets require care and cleaning as well as proper storage. Otherwise, webs are made up of durable rebar and aluminum tags which only need repair if disturbed. Tools used in the field - scales and rulers, pouches, trap bags and ziplock supply must be maintained on hand at SevFS for trapping events.

Additional information: 

Additional Information on the personnel associated with the Data Collection / Data Processing

Sevilleta Field Crew Employee History

Chandra Tucker April 2014-present, Megan McClung, April 2013-present, Stephanie Baker, October 2010-Present, John Mulhouse, August 2009-June 2013, Amaris Swann, August 25, 2008-January 2013, Maya Kapoor, August 9, 2003-January 21, 2005 and April 2010-March 2011, Terri Koontz, February 2000-August 2003 and August 2006-August 2010, Yang Xia, January 31, 2005-April 2009, Karen Wetherill, February 7, 2000-August 2009, Michell Thomey, September 3, 2005-August 2008, Jay McLeod, January 2006-August 2006, Charity Hall, January 31, 2005-January 3, 2006, Tessa Edelen, August 15, 2004-August 15, 2005, Seth Munson, September 9, 2002-June 2004, Caleb Hickman, September 9, 2002-November 15, 2004, Heather Simpson, August 2000-August 2002, Chris Roberts, September 2001-August 2002, Mike Friggens, 1999-September 2001, Shana Penington, February 2000-August 2000.

*In fall 2013, the Grassland Core site was not able to be trapped due to government shutdown. 

Subscribe to RSS - species composition