field methods

Response of Vegetation and Microbial Communities to Monsoon Precipitation Manipulation in a Mixed Blue and Black Grama Grassland at the Sevilleta National Wildlife Refuge, New Mexico

Abstract: 

The purpose of this project is to test the hypothesis that the smallest 50% of precipitation events during the monsoon season affect microbial functioning and grassland productivity in mixed grasslands of B.eriopoda and B. gracilis at the SNWR. At the SNWR, the summer monsoon season accounts for 60% of total annual precipitation and drives the majority of vegetation productivity during the year; the largest 25% of precipitation events account for the majority of this precipitation. I predict that important ecological variables such as nutrient and soil moisture availability are disproportionately influenced by smaller events. The proposed project will help tease apart the importance of precipitation event classes on nutrient availability and grassland aboveground net primary production (ANPP). This research will also provide a basis for understanding how increased aridity in the U.S. southwest due to increasing global surface temperature and altered precipitation could affect grassland communities at the SNWR.

Additional Project roles: 

34
35

Data set ID: 

286

Core Areas: 

Keywords: 

Methods: 

We will implement 10 open plots (control) and 10 precipitation exclosure plots(treatment; 20 total plots) at a mixed blue and black grama grassland site at the SNWR. In this experiment, treatment plots will only receive the largest 50% of precipitation events. This will maintain statistically similar total precipitation between control and treatment plots because the smallest 50% of events have an insignificant effect on total seasonal precipitation. How these small events are linked to microbial activity and vegetation productivity is still very much unknown. I predict that soil microbial activity and nutrient availability will differ between control and treatment plots and will result in differing vegetation ANPP between them. These effects may become more distinct as time progresses, which is the reason for conducting this research for a series of monsoon seasons.

Existing precipitation exclosures (2.45 m x 2.45 m) will be employed at the mixed grassland site. We will implement 20 total plots (10 control, 10 treatment; approx. 500 m2 total area). Temporary site infrastructure will include 10 precipitation exclosures, a water tank (1100 gal.) and soil moisture probes. This infrastructure currently exists at the mixed grassland site and will be adopted from Michell Thomey's project entitled, "Soil moisture extremes and soil water dynamics across a semiarid grassland ecotone."

Precipitation is the only independent variable in this experiment. Using precipitation exclosures, I will remove all ambient precipitation from treatment plots from DOY 182-273. Ambient daily precipitation thatexceeds the estimated 50% threshold will be delivered to the plots within 24 hours of an event. Delivered precipitation will be adjusted for atmospheric demand differences. 

Dependent variables in this experiment are vegetation ANPP, soil nitrogen content, soil enzymatic activityand soil moisture content. Vegetation biomass will be collected from the sites on DOY 181 and 274. Soil enzymatic activity will be determined approximately 4 times per monsoon season using plot soil samples. Soil nitrogen content will be measured under vegetation using nitrogen probes. Volumetric soil moisture content [m3 m-3] will be measured continuously using soil moisture probes (30 cm depth). 

Stress Response from Male-Male Competition in Varying Thermal Environments at the Sevilleta National Wildlife Refuge, New Mexico

Abstract: 

Environmental temperature influences virtually all aspects of organismal performance, including fitness. And since temperature varies throughout space and time, organisms must regularly compete for optimal thermal habitats, much as they do for other resources (e.g. territory, food, or females). However, competition for thermal resources imposes costs, often in the form of a stress response (i.e. increased corticosterone production). Elevated corticosterone promotes physiological and behavioral responses that can increase an organism’s chance of survival, but if left in an organism’s system for too long, it will reduce immunity, degenerate neurons, and lower fitness. Previous theoretical and empirical work indicates that, all else being equal, patchy thermal landscapes reduce the energetic cost of thermoregulation. Therefore, I hypothesize that lizards exposed to patchy distributions of preferred temperatures will have less stress (and thus lower levels of corticosterone) than those exposed to clumped distributions. Furthermore, patchily distributed resources are more difficult for territorial males to monopolize, and thus, subordinate males in patchy thermal landscapes should experience less stress than subordinate males in clumped thermal landscapes.

Additional Project roles: 

32
33

Data set ID: 

284

Core Areas: 

Keywords: 

Methods: 

Experimental design: Starting in the July of 2012, I will initiate this project as part of a continuing large-scale field study at Sevilleta LTER site in collaboration with PI Michael Angilletta’s Spatially Explicit Theory of Thermoregulation project. As in past research conducted in 2008, 2009 and 2011, I will use male Yarrow’s spiny lizard. This lizard thermoregulates accurately in the absence of predators14,15 and aggressively defends resources from conspecific males14,16.

Nine outdoor arenas (20 x 20 m), consisting of sheet metal walls and a canopy of shade cloth, will be used to manipulate the thermal environments. Among the arenas, three patterns of shade patches will be replicated three times each to generate distinct thermal landscapes (see Figure 1).  Lizards will be paired by size: large dominant (22-30 g) with a small subordinate (15-21 g). Each pair (n = 12) will be randomly assigned one of the thermal environments. Prior to each trial, males will be habituated to their arenas for 10 days. During this period, each male will be exposed to the thermal arena every other day (for a 24-h period) in the absence of a competitor (total of 5 days per animal). After the habituation period, males will be placed in arenas for a 4-day testing period. Males will spend two of these days in isolation and the other two in competition. Half the pairs will start the trial in isolation (solitary treatment), and the other half of the pairs will start the trial in competition (social treatment). A matched pair of lizards will be placed together in one arena, and the other two arenas will each have one individual (either small or large) placed into it.  After two days, all lizards will be captured and blood samples will be collected within three minutes (speed of collection is necessary to prevent handling stress from affecting plasma corticosterone levels17). Blood will be taken from the orbital sinus with a glass capillary tube and then taken back to the lab where the plasma will be obtained through centrifugation. Plasma will be stored at -80˚C for hormone assays18. After bleeding, solitary lizards will be placed together in one arena, and the previously paired individuals will be separated and split between the two remaining arenas. Thus, a completed habituation and observation set for six pairs (two pairs per type of thermal environment) will take 14 days. And 3 sets will be conducted per season giving a total of 18 pairs per season in each thermal environment (54 pairs in isolation and competition per season). Mixed modeling procedures in the statistical software R will be used to quantify the effects of competition and thermal patchiness on the corticosterone levels of lizards19.


 Fig. 1. Patterns of shade patches for arenas (each replicated 3x).

Pinon-Juniper (Core Site) Quadrat Data for the Net Primary Production Study at the Sevilleta National Wildlife Refuge, New Mexico (2003-present )

Abstract: 

This dataset contains pinon-juniper woodland quadrat data and is part of a long-term study at the Sevilleta LTER measuring net primary production (NPP) across four distinct ecosystems: creosote-dominant shrubland (Site C, est. winter 1999), black grama-dominant grassland (Site G, est. winter 1999), blue grama-dominant grassland (Site B, est. winter 2002), and pinon-juniper woodland (Site P, est. winter 2003). Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes.

Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and and foliage, over time and incoporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots within each site. A third sampling at Site C is performed in the winter. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV157, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV182, "Seasonal Biomass and Seasonal and Annual NPP for Core Research Sites."

Data set ID: 

278

Core Areas: 

Additional Project roles: 

458
459
460
461

Keywords: 

Methods: 

Locating the Sampling Quadrats:

Site P, the pinon-juniper woodland site (Cerro Montosa), is set-up differently than the other core sites. In order to accommodate the different habitat types, groups of transects (i.e., "plots") were set up along north (N) and south (S) facing slopes as well as along vegas (V) and ridges (R). Transects on the first two plots consist of 40 quads each (10 quadrants for each of four habitat types). Plot one is slightly west of plot three and plot two is slightly west of the weather station. Plot three is located on a wide piedmont, which consists of four transects with five quadrats on each.

Collecting the Data:

Net primary production data is collected twice each year, spring and fall, for all sites. The Five Points Creosote Core Site is also sampled in winter. Spring measurements are taken in April or May when shrubs and spring annuals have reached peak biomass. Fall measurements are taken in either September or October when summer annuals have reached peak biomass but prior to killing frosts. Winter measurements are taken in February before the onset of spring growth.

Vegetation data is collected on a palm top computer. A 1-m2 PVC-frame is placed over the fiberglass stakes that mark the diagonal corners of each quadrat. When measuring cover it is important to stay centered over the vegetation in the quadrat to prevent errors caused by angle of view (parallax). Each PVC-frame is divided into 100 squares with nylon string. The dimensions of each square are 10cm x 10cm and represent 1 percent of the total area.

The cover (area) and height of each individual live (green) vegetative unit that falls within the one square meter quadrat is measured. A vegetative unit consists of an individual size class (as defined by a unique cover and height) of a particular species within a quadrat. Cover is quantified by counting the number of 10cm x 10cm squares filled by each vegetative unit.

Niners and plexidecs are additional tools that help accurately determine the cover a vegetative unit. A niner is a small, hand-held PVC frame that can be used to measure canopies. Like the larger PVC frame it is divided into 10cm x 10cm squares, each square representing 1% of the total cover. However, there are only nine squares within the frame, hence the name “niner.” A plexidec can help determine the cover of vegetative units with covers less than 1%. Plexidecs are clear plastic squares that are held above vegetation. Each plexidec represents a cover of 0.5% and has smaller dimensions etched onto the surface that correspond to 0.01%, 0.05%, 0.1%, and 0.25% cover.

It is extremely important that cover and height measurements remain consistent over time to ensure that regressions based on this data remain valid. Field crew members should calibrate with each other to ensure that observer bias does not influence data collection.

Cover Measurements:

Grasses-To determine the cover of a grass clump, envision a perimeter around the central mass or densest portion of the plant, excluding individual long leaves, wispy ends, or more open upper regions of the plant. Live foliage is frequently mixed with dead foliage in grass clumps and this must be kept in mind during measurement as our goal is to measure only plant biomass for the current season. In general, recently dead foliage is yellow and dead foliage is gray. Within reason, try to include only yellow or green portions of the plant in cover measurement while excluding portions of the plant that are gray. This is particularly important for measurements made in the winter when there is little or no green foliage present. In winter, sometimes measurements will be based mainly on yellow foliage. Stoloniferous stems of grasses that are not rooted should be ignored. If a stem is rooted it should be recorded as a separate observation from the parent plant.

Forbs, shrubs and sub-shrubs (non-creosote)-The cover of forbs, shrubs and sub-shrubs is measured as the horizontal area of the plant. If the species is an annual it is acceptable to include the inflorescence in this measurement if it increases cover. If the species is a perennial, do not include the inflorescence as part of the cover measurement. Measure all foliage that was produced during the current season, including any recently dead (yellow) foliage. Avoid measuring gray foliage that died in a previous season.

Cacti-For cacti that consist of a series of pads or jointed stems (Opuntia phaecantha, Opuntia imbricata) measure the length and width of each pad to the nearest cm instead of cover and height. Cacti that occur as a dense ball/clump of stems (Opuntia leptocaulis) are measured using the same protocol as shrubs. Pincushion or hedgehog cacti (Escobaria vivipara, Schlerocactus intertextus, Echinocereus fendleri) that occur as single (or clustered) cylindrical stems are measured as a single cover.

Yuccas-Make separate observations for the leaves and caudex (thick basal stem). Break the observations into sections of leaves that are approximately the same height and record the cover as the perimeter around this group of leaf blades. The caudex is measured as a single cover. The thick leaves of yuccas make it difficult to make a cover measurement by centering yourself over the caudex of the plant. The cover of the caudex may be estimated by holding a niner next to it or using a tape measure to measure to approximate the area.

Height Measurements:

Height is recorded as a whole number in centimeters. All heights are vertical heights but they are not necessarily perpendicular to the ground if the ground is sloping.

Annual grasses and all forbs-Measure the height from the base of the plant to the top of the inflorescence (if present). Otherwise, measure to the top of the green foliage.

Perennial grasses-Measure the height from the base of the plant to the top of the live green foliage. Do not include the inflorescence in the height measurement. The presence of live green foliage may be difficult to see in the winter. Check carefully at the base of the plant for the presence of green foliage. If none is found it may be necessary to pull the leaf sheaths off of several plants outside the quadrat. From this you may be able to make some observations about where green foliage is likely to occur.

Perennial shrubs and sub-shrubs (non-creosote)-Measure the height from the base of the green foliage to the top of the green foliage, ignoring all bare stems. Do not measure to the ground unless the foliage reaches the ground.

Plants rooted outside but hanging into a quadrat-Do not measure the height from the ground. Measure only the height of the portion of the plant that is within the quadrat. 

Creosote Measurements:

To measure creosote (i.e., Larrea tridenta) break the observations into two categories:

1.) Small, individual clusters of foliage on a branch (i.e., branch systems): Measure the horizontal cover of each live (i.e., green) foliage cluster, ignoring small open spaces (keeping in mind the 15% guideline stated above). Then measure the vertical "height" of each cluster from the top of the foliage to a plane created by extending a line horizontally from the bottom of the foliage. Each individual foliage cluster within a bush is considered a separate observation.

2.) Stems: Measure the length of each stem from the base to the beginning of live (i.e., green) foliage. Calculate the cumulative total of all stem measurements. This value is entered under "height" with the species as "stem" for each quadrat containing creosote. All other variable receive a default entry of "1" for creosote stem measurements.

Do not measure dead stems or areas of dead foliage. If in doubt about whether a stem is alive, scrape the stem with your fingernail and check for the presence of green cambium.

Recording the Data:

Excel spreadsheets are used for data entry and file names should begin with the overall study (npp), followed by the date (mm.dd.yy) and the initials of the recorder (.abc). Finally, the site abbreviation should be added (i.e., c, g, b, p). The final format for sites B, G, and C should be as follows: npp_core.mm.dd.yy.abc.xls. For site P, the file format should be npp_pinj.mm.dd.yy.abc.xls. File names should be in lowercase.

Data sources: 

sev278_npppinjquadrat_20161214.csv

Additional information: 

Other researchers involved with collecting samples/data: Chandra Tucker (CAT; 04/2014-present), Megan McClung (MAM; 04/2013-present), Stephanie Baker (SRB; 09/2010-present), John Mulhouse (JMM; 08/2009-06/2013), Amaris Swann (ALS; 08/2008-01/2013), Maya Kapoor (MLK; 08/2003 - 01/2005, 05/2010 - 03/2011), Terri Koontz (TLK; 02/2000 - 08/2003, 08/2006 - 08/2010), Yang Xia (YX; 01/2005 - 03/2010), Karen Wetherill (KRW; 02/2000 - 08/2009);  Michell Thomey (MLT; 09/2005 - 08/2008), Heather Simpson (HLS; 08/2000 - 08/2002), Chris Roberts (CR; 09/2001- 08/2002), Shana Penington (SBP; 01/2000 - 08/2000), Seth Munson (SMM; 09/2002 - 06/2004), Jay McLeod (JRM; 01/2006 - 08/2006); Caleb Hickman (CRH; 09/2002 - 11/2004), Charity Hall (CLH; 01/2005 -  01/2006), Tessa Edelen (MTE, 08/2004 - 08/2005).

Data updated 08/18/15: MOSQ changed to MUSQ3; ARPUP6 changed to ARPU9; SPWR changed to SPPO6; ambiguous Quercus species resolved by New Mexico Natural Heritage Program and updated.

Konza Species Composition: Fire by Nitrogen Project

Abstract: 

The distribution, structure and function of mesic savanna grasslands are strongly driven by fire regimes, grazing by large herbivores, and their interactions. This research addresses a general question about our understanding of savanna grasslands globally: Is our knowledge of fire and grazing sufficiently general to enable us to make accurate predictions of how these ecosystems will respond to changes in these drivers over time? Some evidence suggests that fire and grazing influence savanna grassland structure and function differently in South Africa (SA) compared to North America (NA). These differences have been attributed to the contingent factors of greater biome age, longer evolutionary history with fire and grazing, reduced soil fertility, and greater diversity of plants and large herbivores in SA. An alternative hypothesis is that differences in methods and approaches used to study these systems have led to differing perspectives on the role of these drivers. If the impacts of shared ecosystem drivers truly differ between NA and SA, this calls into question the generality of our understanding of these ecosystems and our ability to forecast how changes in key drivers will affect savanna grasslands globally. Since 2006, an explicitly comparative research program has been conducted to determine the degree of convergence in ecosystem (productivity, N and C cycling) and plant community (composition, diversity, dynamics) responses to fire and grazing in SA and NA.

Thus far, initial support has been found for convergence at the ecosystem level and divergence at the community level in response to alterations in both fire regimes and grazing. However, there have also been two unexpected findings (1) the ways in which fire and grazing interact differed between NA and SA, and (2) the rate of change in communities when grazers were removed was much greater in NA than in SA. These unexpected findings raise a number of important new questions: (Q1) Will exclusion of grazing eventually affect community structure and composition across all fire regimes in SA? (Q2) Will these effects differ from those observed in NA? (Q3) What are the determinants of the different rates of community change? (Q4) How will these determinants influence future trajectories of change? (Q5) Will the different rates and trajectories of community change be mirrored by responses in ecosystem function over time? This project is based on a large herbivore exclusion study established within the context of long-term (25-50+ yr) experimental manipulations of fire frequency at the Konza Prairie Biological Station (KPBS) in NA and the Kruger National Park (KNP) in SA. The suite of core studies and measurements include plant community composition, ANPP, and herbivore abundance and distribution at both study sites to answer these research questions.

Data set ID: 

268

Core Areas: 

Keywords: 

Methods: 

We used comparable experimental designs and sampling procedures at both URF and KPBS. At URF we used three replicate plots (not hayed or mowed) that have been burned every 1 and 3 years in the spring, and those left unburned (N=9 plots). At KPBS, we established replicate plots in experimental watersheds burned every 1 and 4 years in the spring, and those left unburned (N=9 plots). Thus, the only difference in design between NA and SA was the intermediate burn frequency. In 2005 at both sites we established four 2x2m areas in each replicate of the 1-yr, 3-4 yr burned, and unburned plots (N=36 subplots). We then randomly selected two of the subplots for the fertilization treatment and the other two subplots served as controls (Fig. 1). Starting in 2006 at KPBS and 2007 at URF, we began adding 10 gN/m2/yr as NH4+NO3- to assess the interactive effects of fire frequency and nitrogen limitation on plant community composition, structure and dynamics.

Fig. 1. Experimental design and sampling for the proposed studies: A) the role of long-term fire regimes (without megaherbivores), B) the importance of grazing and grazing/fire interactions, and C) the role of megaherbivore diversity. Moveable exclosures (3/plot) will be used to estimate ANPP in the grazed plots.  N addition subplots (2 x 2 m) will be divided into 4 1 x 1 plots, with two designated for plant species composition sampling and the other two for destructive sampling. Soil samples will be collected from areas not designated for ANPP or plant composition sampling. Note that the same annually and infrequently burned plots at Kruger and Konza will be used in (B) and (C). In addition, similar plots will be established minus the N addition subplots in the 1-yr and 4-yr burned blocks of the Buffalo enclosure for (C). 

Each of the 2x2m subplots was divided into four 1x1m quadrats. Annually since 2005 (prior to nitrogen addition) canopy cover of each species rooted in each quadrat was visually estimated twice during the growing season to sample early and late season species. As a surrogate for aboveground production, we measured light availability at the end of the growing season above the canopy at the ground surface in each quadrat (N=4 per subplot) using a Decagon ceptometer. 

Net primary production measurements: Prior to the 2005 growing season we established plots (13.7 m by 18.3 m) in ungrazed areas burned annually, at 3–4-year intervals, and unburned (n  = 3 per fire treatment) at both KBPS and URF. Areas with trees or large shrubs were avoided as our main goal was to evaluate responses in the herbaceous plant community. ANPP was estimated from end-of-season harvests starting in 2005 (September for KBPS, April for URF). In 10, 0.1-m2 (20 cm by 50 cm) quadrats randomly located in each plot (n  = 30/treatment/site), we harvested the vegetation at ground level and separated it into grass, forb, and previous year’s dead biomass. Samples were dried at 60C to a constant weight. For annually burned plots, total biomass harvested represents ANPP. For the intermediate and unburned sites, we calculated ANPP by summing all but the previous year’s dead component.

To assess the impacts of fire on ANPP in grazed areas, we established herbivore exclusion treatments in KBPS in North America and KNP in South Africa. Herbivore exclosures in grazed areas in KPBS and KNP were erected prior to the 2006 growing season. The exclosures were 7 m in diameter, 2 m tall, and constructed of diamond mesh (5-cm diameter). Seven exclosures were established in each of three blocks of the three fire treatments— annually burned, intermediate burn (3- years for KNP or 4-years for KPBS), and unburned (n = 21 exclosures/treatment/site). As our focus was on ANPP responses of the herbaceous layer, exclosures were not located beneath trees or where dense shrub patches were present. Additionally, in the Satara region of KNP is a 900-ha permanent enclosure containing 80–90 adult African buffalo (S. caffer). This enclosure was erected in 2000 and was divided into six areas (100–200 ha each), with these burned on a rotational basis including plots burned annually and plots that were unburned. We used the unburned and annually burned areas in the buffalo enclosure to provide a direct comparison for determining the effects of a single-species large grazer in KNP and KPBS, and to assess the effects of large herbivore diversity at adjacent sites in KNP. Similar exclosures were built in the African buffalo enclosure at KNP. We placed 7 exclosures in the three blocks of each fire treatment (annually burned and unburned) resulting in 21 exclosures/treatment. We sampled ANPP by harvesting plant biomass from three 0.1 m2 quadrats per herbivore exclosure at the end of the growing season starting in 2006. 

Additional information: 

Data are collected twice each year at each site. Sample periods are equivalent to spring and late summer at each study site (December/January and March/April in South Africa, May and September in North America.

Where the Data were Collected: 

Ukulinga Research Farm, Pietermaritzburg, South Africa; Satara Region of Kruger National Park, South Africa; Konza Prairie Biological Station, North America

Additional Geographic Metadata:  

Ukulinga Research Farm (URF), South Africa. The URF of the University of KwaZulu-Natal is located in Pietermaritzburg, in southeastern South Africa (30o 24’ S, 29o 24’ E). The site is dominated by native perennial C4 grasses, such as Themeda triandra and Heteropogon contortus, that account for much of the herbaceous aboveground net primary production (ANPP). Mean annual precipitation is 790 mm, coming mostly as convective storms during summer (Oct-Apr). Summers are warm with a mean monthly maximum of 26.4oC in February, and winters are mild with occasional frost. Soils are fine-textured and derived from shales. There has been no grazing at this site for >60 years. Long-term experimental plots were established at URF in 1950 with the objective of determining the optimal fire and/or summer cutting regime to maximize hay production. The experiment is a randomized block (three replicates) split-plot design with four whole-plot haying treatments and 11 subplot fire or mowing treatments. Subplot sizes are 13.7 x 18.3 m. 

Kruger National Park (KNP), South Africa. The KNP is a 2 million ha protected area of savanna grassland that includes many of the large herbivores common to southern Africa (22º 25' to 25º 2 32' S, 30º 50' to 32º 2' E). The extant abundance and grazing intensity of herbivores in KNP is considered moderate for regional savanna grasslands. In the south-central region of KNP where our research takes place, average rainfall is 537 mm with most falling during the growing season (Oct-Apr). The dormant season is mild, dry and frost free, and summers are warm with mean monthly maximum air temperature of 28.9oC in January. Because of the importance of fire in savanna grassland ecosystems, the Experimental Burn Plot (EBP) experiment was initiated in 1954 to examine the effects of fire frequency (control-no fire, 1-, 2-, 3-, 4- and 6-yr return interval) and season [early spring (Aug), spring (Oct), mid-summer (Dec), late summer (Feb), and fall (Apr)] on vegetation communities in the park. Four blocks of 12 plots (two were later split for the 4- and 6-yr trts), each ~7 ha (370 x 180 m) in size, were established in four primary vegetation types covering the two major soil types (granites and basalts) and spanning the precipitation gradient in the park. Each plot has 50+ years of known fire history, and native herbivores have had unrestricted access, thus fire and grazing effects are combined. This research focuses on the EBPs located near Satara where precipitation, soil type, and the mix of herbaceous and woody plants are similar to KPBS. Vegetation on the blocks is co-dominated by C4 grasses, such as Bothriochloa radicans, Panicum coloratum and Digiteria eriantha, and woody plants, such as Acacia nigrescens and Sclerocarya birrea.  Soils are fine-textured and derived from basalts. Adjacent to one of the Satara blocks is the Cape buffalo enclosure, erected in 2000 for veterinary purposes. The 200 ha permanent enclosure contains 65-80 animals and is divided into 4 blocks burned on a rotational basis. The grazing intensity inside is comparable to the moderate levels imposed in the park and at KPBS. Two blocks are burned annually while others are burned infrequently (approximately once every 4-yr). 

Konza Prairie Biological Station (KPBS), North America. The KPBS is a 3,487 ha savanna grassland in northeastern Kansas, USA (39o 05’ N, 96o 35’ W) dominated by native perennial C4 grasses such as Andropogon gerardii and Sorghastrum nutans that account for the majority of ANPP. Scattered shrub and tree species include Cornus drummondii, Gleditsia triacanthos, and Prunus spp. Numerous sub-dominant grasses and forbs contribute to the floristic diversity of the site. The climate is continental, with mean July air temperature of 27°C. Annual precipitation is ca. 820 mm/year, with 75% falling as rain during the Apr-Oct growing season. Soils are fine textured, silty clay loams derived from limestone and shales. KPBS includes fully replicated watershed-level fire and fire/grazing treatments, in place since 1977 and 1987, respectively.  Replicate watersheds (mean size ~60ha) are burned at 1-, 2-, 4-, 10- and 20-yr intervals, mainly in April, to encompass a range of likely natural fire frequencies and management practices. A subset of watersheds has not been grazed for more than 30 years. To address the role of native grazers and fire/grazing interactions, bison (~260 individuals) were reintroduced to KPBS in a 1000-ha fenced area that includes replicate watersheds burned in the spring at 1-, 2-, 4- and 20-year intervals. The overall grazing intensity is considered moderate.

Study Area 1:  

Study Area Name:  Ukulinga Research Farm

Study Area Location: Near Pietermaritzburg, South Africa 

Elevation: 840 m above sea level

Landform: Colluvium fan

Geology: Marine shales and dolerite colluvium

Soils: Dystric leptosols, Chromic luvisols, Haplic plinthisols

Vegetation: Native grassland

Climate: Mean annual precipitation is 844 mm, Mean annual temperature 17.6C

Site history: Ungrazed since 1950

Single Point: 29o 40’ S / 30o 20’ E

Study Area 2:  Kruger National Park, South Africa

Study Area Name: Satara Experimental Burn Plots and Cape Buffalo Exclosure

Study Area Location: Near Satara rest camp

Elevation:  240-320 meters above sea level

Landform:  Level Upland

Geology: Basalts

Soils: Rhodic nitisols, Haplic luvisols, Leptic phaeozems

Vegetation: Native grassland

Climate: Mean annual precipitation 544 mm; mean annual temperature 21.2–23.3C

Site history: Grazed by native herbivores

Single Point: 23–25o S /30-31o E

   

Study Area 3:  Konza Prairie Biological Station

Study Area Name: Konza Prairie

Study Area Location: Watersheds N20B, N4D, N1B, N4B; 1D, 4F, 20B

Elevation: 320-444 meters above sea level

Landform: Alluvial terrace

Geology: Cherty limestone and shale

Soils: Udic argiustolls

Vegetation: Native grassland

Climate: Mean annual precipitation 835 mm; mean annual temperature 12.7C

Site history: Ungrazed watersheds (since 1971), watersheds grazed by native herbivores (since 1987)

Single Point: 39o 05.48’ N / 96o 34.12’ W

Ukulinga Species Composition: Fire by Nitrogen Project

Abstract: 

The distribution, structure and function of mesic savanna grasslands are strongly driven by fire regimes, grazing by large herbivores, and their interactions. This research addresses a general question about our understanding of savanna grasslands globally: Is our knowledge of fire and grazing sufficiently general to enable us to make accurate predictions of how these ecosystems will respond to changes in these drivers over time? Some evidence suggests that fire and grazing influence savanna grassland structure and function differently in South Africa (SA) compared to North America (NA). These differences have been attributed to the contingent factors of greater biome age, longer evolutionary history with fire and grazing, reduced soil fertility, and greater diversity of plants and large herbivores in SA. An alternative hypothesis is that differences in methods and approaches used to study these systems have led to differing perspectives on the role of these drivers. If the impacts of shared ecosystem drivers truly differ between NA and SA, this calls into question the generality of our understanding of these ecosystems and our ability to forecast how changes in key drivers will affect savanna grasslands globally. Since 2006, an explicitly comparative research program has been conducted to determine the degree of convergence in ecosystem (productivity, N and C cycling) and plant community (composition, diversity, dynamics) responses to fire and grazing in SA and NA.

Thus far, initial support has been found for convergence at the ecosystem level and divergence at the community level in response to alterations in both fire regimes and grazing. However, there have also been two unexpected findings (1) the ways in which fire and grazing interact differed between NA and SA, and (2) the rate of change in communities when grazers were removed was much greater in NA than in SA. These unexpected findings raise a number of important new questions: (Q1) Will exclusion of grazing eventually affect community structure and composition across all fire regimes in SA? (Q2) Will these effects differ from those observed in NA? (Q3) What are the determinants of the different rates of community change? (Q4) How will these determinants influence future trajectories of change? (Q5) Will the different rates and trajectories of community change be mirrored by responses in ecosystem function over time? This project is based on a large herbivore exclusion study established within the context of long-term (25-50+ yr) experimental manipulations of fire frequency at the Konza Prairie Biological Station (KPBS) in NA and the Kruger National Park (KNP) in SA. The suite of core studies and measurements include plant community composition, ANPP, and herbivore abundance and distribution at both study sites to answer these research questions.

Data set ID: 

263

Core Areas: 

Keywords: 

Methods: 

Konza-Ukulinga fire by nitrogen project: We used comparable experimental designs and sampling procedures at both URF and KPBS (Figure 1). At URF we used three replicate plots (not hayed or mowed) that have been burned every 1 and 3 years in the spring, and those left unburned (N=9 plots). At KPBS, we established replicate plots in experimental watersheds burned every 1 and 4 years in the spring, and those left unburned (N=9 plots). Thus, the only difference in design between NA and SA was the intermediate burn frequency. In 2005 at both sites we established four 2x2m areas in each replicate of the 1-yr, 3-4 yr burned, and unburned plots (N=36 subplots). We then randomly selected two of the subplots for the fertilization treatment and the other two subplots served as controls (Fig. 1). Starting in 2006 at KPBS and 2007 at URF, we began adding 10 gN/m2/yr as NH4+NO3- to assess the interactive effects of fire frequency and nitrogen limitation on plant community composition, structure and dynamics.

Fig. 1. Experimental design and sampling for the proposed studies: A) the role of long-term fire regimes (without megaherbivores), B) the importance of grazing and grazing/fire interactions, and C) the role of megaherbivore diversity. Moveable exclosures (3/plot) will be used to estimate ANPP in the grazed plots.  N addition subplots (2 x 2 m) will be divided into 4 1 x 1 plots, with two designated for plant species composition sampling and the other two for destructive sampling. Soil samples will be collected from areas not designated for ANPP or plant composition sampling. Note that the same annually and infrequently burned plots at Kruger and Konza will be used in (B) and (C). In addition, similar plots will be established minus the N addition subplots in the 1-yr and 4-yr burned blocks of the Buffalo enclosure for (C). 

Each of the 2x2m subplots was divided into four 1x1m quadrats. Annually since 2005 (prior to nitrogen addition) canopy cover of each species rooted in each quadrat was visually estimated twice during the growing season to sample early and late season species. As a surrogate for aboveground production, we measured light availability at the end of the growing season above the canopy at the ground surface in each quadrat (N=4 per subplot) using a Decagon ceptometer. 

Konza-Kruger fire by grazing project: For this study, we are utilizing the long-term experiments at KPBS and KNP in which native megaherbivore grazers are present and fire frequency is directly manipulated. To assess the effects of grazing and fire-grazing interactions, we constructed seven sets of permanent exclosures and adjacent control plots in three blocks at both sites. The exclosures and matching paired open plots were established in 2005 in the Satara EBPs that are burned every 1 and 3 years in the spring or left unburned and at KPBS in watersheds that are burned every 1 and 4 years or left unburned. (N=63 exclosures/site; Fig. 1). Within each exclosure and paired open plot, we sample plant community composition and light availability in permanent 2x2 m subplots. We collect ANPP at the end of each growing season from each exclosure, and throughout the growing season in grazed areas adjacent to the unexclosed plots using 1x1 m moveable exclosures (Fig. 1).

Net primary production measurements: Prior to the 2005 growing season we established plots (13.7 m by 18.3 m) in ungrazed areas burned annually, at 3–4-year intervals, and unburned (n  = 3 per fire treatment) at both KBPS and URF. Areas with trees or large shrubs were avoided as our main goal was to evaluate responses in the herbaceous plant community. ANPP was estimated from end-of-season harvests starting in 2005 (September for KBPS, April for URF). In 10, 0.1-m2 (20 cm by 50 cm) quadrats randomly located in each plot (n  = 30/treatment/site), we harvested the vegetation at ground level and separated it into grass, forb, and previous year’s dead biomass. Samples were dried at 60C to a constant weight. For annually burned plots, total biomass harvested represents ANPP. For the intermediate and unburned sites, we calculated ANPP by summing all but the previous year’s dead component.

To assess the impacts of fire on ANPP in grazed areas, we established herbivore exclusion treatments in KBPS in North America and KNP in South Africa. Herbivore exclosures in grazed areas in KPBS and KNP were erected prior to the 2006 growing season. The exclosures were 7 m in diameter, 2 m tall, and constructed of diamond mesh (5-cm diameter). Seven exclosures were established in each of three blocks of the three fire treatments— annually burned, intermediate burn (3- years for KNP or 4-years for KPBS), and unburned (n = 21 exclosures/treatment/site). As our focus was on ANPP responses of the herbaceous layer, exclosures were not located beneath trees or where dense shrub patches were present. Additionally, in the Satara region of KNP is a 900-ha permanent enclosure containing 80–90 adult African buffalo (S. caffer). This enclosure was erected in 2000 and was divided into six areas (100–200 ha each), with these burned on a rotational basis including plots burned annually and plots that were unburned. We used the unburned and annually burned areas in the buffalo enclosure to provide a direct comparison for determining the effects of a single-species large grazer in KNP and KPBS, and to assess the effects of large herbivore diversity at adjacent sites in KNP. Similar exclosures were built in the African buffalo enclosure at KNP. We placed 7 exclosures in the three blocks of each fire treatment (annually burned and unburned) resulting in 21 exclosures/treatment. We sampled ANPP by harvesting plant biomass from three 0.1 m2 quadrats per herbivore exclosure at the end of the growing season starting in 2006. 

Additional information: 

Data are collected twice each year at each site. Sample periods are equivalent to spring and late summer at each study site (December/January and March/April in South Africa, May and September in North America.

Where the Data were Collected: 

Ukulinga Research Farm, Pietermaritzburg, South Africa; Satara Region of Kruger National Park, South Africa; Konza Prairie Biological Station, North America

Additional Geographic Metadata:  

Ukulinga Research Farm (URF), South Africa. The URF of the University of KwaZulu-Natal is located in Pietermaritzburg, in southeastern South Africa (30o 24’ S, 29o 24’ E). The site is dominated by native perennial C4 grasses, such as Themeda triandra and Heteropogon contortus, that account for much of the herbaceous aboveground net primary production (ANPP). Mean annual precipitation is 790 mm, coming mostly as convective storms during summer (Oct-Apr). Summers are warm with a mean monthly maximum of 26.4oC in February, and winters are mild with occasional frost. Soils are fine-textured and derived from shales. There has been no grazing at this site for >60 years. Long-term experimental plots were established at URF in 1950 with the objective of determining the optimal fire and/or summer cutting regime to maximize hay production. The experiment is a randomized block (three replicates) split-plot design with four whole-plot haying treatments and 11 subplot fire or mowing treatments. Subplot sizes are 13.7 x 18.3 m. 

Kruger National Park (KNP), South Africa. The KNP is a 2 million ha protected area of savanna grassland that includes many of the large herbivores common to southern Africa (22º 25' to 25º 2 32' S, 30º 50' to 32º 2' E). The extant abundance and grazing intensity of herbivores in KNP is considered moderate for regional savanna grasslands. In the south-central region of KNP where our research takes place, average rainfall is 537 mm with most falling during the growing season (Oct-Apr). The dormant season is mild, dry and frost free, and summers are warm with mean monthly maximum air temperature of 28.9oC in January. Because of the importance of fire in savanna grassland ecosystems, the Experimental Burn Plot (EBP) experiment was initiated in 1954 to examine the effects of fire frequency (control-no fire, 1-, 2-, 3-, 4- and 6-yr return interval) and season [early spring (Aug), spring (Oct), mid-summer (Dec), late summer (Feb), and fall (Apr)] on vegetation communities in the park. Four blocks of 12 plots (two were later split for the 4- and 6-yr trts), each ~7 ha (370 x 180 m) in size, were established in four primary vegetation types covering the two major soil types (granites and basalts) and spanning the precipitation gradient in the park. Each plot has 50+ years of known fire history, and native herbivores have had unrestricted access, thus fire and grazing effects are combined. This research focuses on the EBPs located near Satara where precipitation, soil type, and the mix of herbaceous and woody plants are similar to KPBS. Vegetation on the blocks is co-dominated by C4 grasses, such as Bothriochloa radicans, Panicum coloratum and Digiteria eriantha, and woody plants, such as Acacia nigrescens and Sclerocarya birrea.  Soils are fine-textured and derived from basalts. Adjacent to one of the Satara blocks is the Cape buffalo enclosure, erected in 2000 for veterinary purposes. The 200 ha permanent enclosure contains 65-80 animals and is divided into 4 blocks burned on a rotational basis. The grazing intensity inside is comparable to the moderate levels imposed in the park and at KPBS. Two blocks are burned annually while others are burned infrequently (approximately once every 4-yr). 

Konza Prairie Biological Station (KPBS), North America. The KPBS is a 3,487 ha savanna grassland in northeastern Kansas, USA (39o 05’ N, 96o 35’ W) dominated by native perennial C4 grasses such as Andropogon gerardii and Sorghastrum nutans that account for the majority of ANPP. Scattered shrub and tree species include Cornus drummondii, Gleditsia triacanthos, and Prunus spp. Numerous sub-dominant grasses and forbs contribute to the floristic diversity of the site. The climate is continental, with mean July air temperature of 27°C. Annual precipitation is ca. 820 mm/year, with 75% falling as rain during the Apr-Oct growing season. Soils are fine textured, silty clay loams derived from limestone and shales. KPBS includes fully replicated watershed-level fire and fire/grazing treatments, in place since 1977 and 1987, respectively.  Replicate watersheds (mean size ~60ha) are burned at 1-, 2-, 4-, 10- and 20-yr intervals, mainly in April, to encompass a range of likely natural fire frequencies and management practices. A subset of watersheds has not been grazed for more than 30 years. To address the role of native grazers and fire/grazing interactions, bison (~260 individuals) were reintroduced to KPBS in a 1000-ha fenced area that includes replicate watersheds burned in the spring at 1-, 2-, 4- and 20-year intervals. The overall grazing intensity is considered moderate.

Study Area 1:  

Study Area Name:  Ukulinga Research Farm

Study Area Location: Near Pietermaritzburg, South Africa 

Elevation: 840 m above sea level

Landform: Colluvium fan

Geology: Marine shales and dolerite colluvium

Soils: Dystric leptosols, Chromic luvisols, Haplic plinthisols

Vegetation: Native grassland

Climate: Mean annual precipitation is 844 mm, Mean annual temperature 17.6C

Site history: Ungrazed since 1950

Single Point: 29o 40’ S / 30o 20’ E

Study Area 2:  Kruger National Park, South Africa

Study Area Name: Satara Experimental Burn Plots and Cape Buffalo Exclosure

Study Area Location: Near Satara rest camp

Elevation:  240-320 meters above sea level

Landform:  Level Upland

Geology: Basalts

Soils: Rhodic nitisols, Haplic luvisols, Leptic phaeozems

Vegetation: Native grassland

Climate: Mean annual precipitation 544 mm; mean annual temperature 21.2–23.3C

Site history: Grazed by native herbivores

Single Point: 23–25o S /30-31o E

   

Study Area 3:  Konza Prairie Biological Station

Study Area Name: Konza Prairie

Study Area Location: Watersheds N20B, N4D, N1B, N4B; 1D, 4F, 20B

Elevation: 320-444 meters above sea level

Landform: Alluvial terrace

Geology: Cherty limestone and shale

Soils: Udic argiustolls

Vegetation: Native grassland

Climate: Mean annual precipitation 835 mm; mean annual temperature 12.7C

Site history: Ungrazed watersheds (since 1971), watersheds grazed by native herbivores (since 1987)

Single Point: 39o 05.48’ N / 96o 34.12’ W

Ukulinga Farms, South Africa: Plant Species List

Abstract: 

The distribution, structure and function of mesic savanna grasslands are strongly driven by fire regimes, grazing by large herbivores, and their interactions. This research addresses a general question about our understanding of savanna grasslands globally: Is our knowledge of fire and grazing sufficiently general to enable us to make accurate predictions of how these ecosystems will respond to changes in these drivers over time? Some evidence suggests that fire and grazing influence savanna grassland structure and function differently in South Africa (SA) compared to North America (NA). These differences have been attributed to the contingent factors of greater biome age, longer evolutionary history with fire and grazing, reduced soil fertility, and greater diversity of plants and large herbivores in SA. An alternative hypothesis is that differences in methods and approaches used to study these systems have led to differing perspectives on the role of these drivers. If the impacts of shared ecosystem drivers truly differ between NA and SA, this calls into question the generality of our understanding of these ecosystems and our ability to forecast how changes in key drivers will affect savanna grasslands globally. Since 2006, an explicitly comparative research program has been conducted to determine the degree of convergence in ecosystem (productivity, N and C cycling) and plant community (composition, diversity, dynamics) responses to fire and grazing in SA and NA.

Thus far, initial support has been found for convergence at the ecosystem level and divergence at the community level in response to alterations in both fire regimes and grazing. However, there have also been two unexpected findings (1) the ways in which fire and grazing interact differed between NA and SA, and (2) the rate of change in communities when grazers were removed was much greater in NA than in SA. These unexpected findings raise a number of important new questions: (Q1) Will exclusion of grazing eventually affect community structure and composition across all fire regimes in SA? (Q2) Will these effects differ from those observed in NA? (Q3) What are the determinants of the different rates of community change? (Q4) How will these determinants influence future trajectories of change? (Q5) Will the different rates and trajectories of community change be mirrored by responses in ecosystem function over time? This project is based on a large herbivore exclusion study established within the context of long-term (25-50+ yr) experimental manipulations of fire frequency at the Konza Prairie Biological Station (KPBS) in NA and the Kruger National Park (KNP) in SA. The suite of core studies and measurements include plant community composition, ANPP, and herbivore abundance and distribution at both study sites to answer these research questions.

This dataset was added to the Sevilleta LTER Data Archive at the request of SEV Principal Investigator Scott Collins.

Data set ID: 

262

Core Areas: 

Keywords: 

Methods: 

We used comparable experimental designs and sampling procedures at both URF and KPBS. At URF we used three replicate plots (not hayed or mowed) that have been burned every 1 and 3 years in the spring, and those left unburned (N=9 plots). At KPBS, we established replicate plots in experimental watersheds burned every 1 and 4 years in the spring, and those left unburned (N=9 plots). Thus, the only difference in design between NA and SA was the intermediate burn frequency. In 2005 at both sites we established four 2x2m areas in each replicate of the 1-yr, 3-4 yr burned, and unburned plots (N=36 subplots). We then randomly selected two of the subplots for the fertilization treatment and the other two subplots served as controls (Fig. 1). Starting in 2006 at KPBS and 2007 at URF, we began adding 10 gN/m2/yr as NH4+NO3- to assess the interactive effects of fire frequency and nitrogen limitation on plant community composition, structure and dynamics.

Fig. 1. Experimental design and sampling for the proposed studies: A) the role of long-term fire regimes (without megaherbivores), B) the importance of grazing and grazing/fire interactions, and C) the role of megaherbivore diversity. Moveable exclosures (3/plot) will be used to estimate ANPP in the grazed plots.  N addition subplots (2 x 2 m) will be divided into 4 1 x 1 plots, with two designated for plant species composition sampling and the other two for destructive sampling. Soil samples will be collected from areas not designated for ANPP or plant composition sampling. Note that the same annually and infrequently burned plots at Kruger and Konza will be used in (B) and (C). In addition, similar plots will be established minus the N addition subplots in the 1-yr and 4-yr burned blocks of the Buffalo enclosure for (C). 

Each of the 2x2m subplots was divided into four 1x1m quadrats. Annually since 2005 (prior to nitrogen addition) canopy cover of each species rooted in each quadrat was visually estimated twice during the growing season to sample early and late season species. As a surrogate for aboveground production, we measured light availability at the end of the growing season above the canopy at the ground surface in each quadrat (N=4 per subplot) using a Decagon ceptometer. 

Net primary production measurements: Prior to the 2005 growing season we established plots (13.7 m by 18.3 m) in ungrazed areas burned annually, at 3–4-year intervals, and unburned (n  = 3 per fire treatment) at both KBPS and URF. Areas with trees or large shrubs were avoided as our main goal was to evaluate responses in the herbaceous plant community. ANPP was estimated from end-of-season harvests starting in 2005 (September for KBPS, April for URF). In 10, 0.1-m2 (20 cm by 50 cm) quadrats randomly located in each plot (n  = 30/treatment/site), we harvested the vegetation at ground level and separated it into grass, forb, and previous year’s dead biomass. Samples were dried at 60C to a constant weight. For annually burned plots, total biomass harvested represents ANPP. For the intermediate and unburned sites, we calculated ANPP by summing all but the previous year’s dead component.

To assess the impacts of fire on ANPP in grazed areas, we established herbivore exclusion treatments in KBPS in North America and KNP in South Africa. Herbivore exclosures in grazed areas in KPBS and KNP were erected prior to the 2006 growing season. The exclosures were 7 m in diameter, 2 m tall, and constructed of diamond mesh (5-cm diameter). Seven exclosures were established in each of three blocks of the three fire treatments— annually burned, intermediate burn (3- years for KNP or 4-years for KPBS), and unburned (n = 21 exclosures/treatment/site). As our focus was on ANPP responses of the herbaceous layer, exclosures were not located beneath trees or where dense shrub patches were present. Additionally, in the Satara region of KNP is a 900-ha permanent enclosure containing 80–90 adult African buffalo (S. caffer). This enclosure was erected in 2000 and was divided into six areas (100–200 ha each), with these burned on a rotational basis including plots burned annually and plots that were unburned. We used the unburned and annually burned areas in the buffalo enclosure to provide a direct comparison for determining the effects of a single-species large grazer in KNP and KPBS, and to assess the effects of large herbivore diversity at adjacent sites in KNP. Similar exclosures were built in the African buffalo enclosure at KNP. We placed 7 exclosures in the three blocks of each fire treatment (annually burned and unburned) resulting in 21 exclosures/treatment. We sampled ANPP by harvesting plant biomass from three 0.1 m2 quadrats per herbivore exclosure at the end of the growing season starting in 2006. 

Data sources: 

sev262_ukulingaspplist_03062012.txt

Additional information: 

Data are collected twice each year at each site. Sample periods are equivalent to spring and late summer at each study site (December/January and March/April in South Africa, May and September in North America.

Where the Data were Collected: 

Ukulinga Research Farm, Pietermaritzburg, South Africa; Satara Region of Kruger National Park, South Africa; Konza Prairie Biological Station, North America

Additional Geographic Metadata:  

Ukulinga Research Farm (URF), South Africa. The URF of the University of KwaZulu-Natal is located in Pietermaritzburg, in southeastern South Africa (30o 24’ S, 29o 24’ E). The site is dominated by native perennial C4 grasses, such as Themeda triandra and Heteropogon contortus, that account for much of the herbaceous aboveground net primary production (ANPP). Mean annual precipitation is 790 mm, coming mostly as convective storms during summer (Oct-Apr). Summers are warm with a mean monthly maximum of 26.4oC in February, and winters are mild with occasional frost. Soils are fine-textured and derived from shales. There has been no grazing at this site for >60 years. Long-term experimental plots were established at URF in 1950 with the objective of determining the optimal fire and/or summer cutting regime to maximize hay production. The experiment is a randomized block (three replicates) split-plot design with four whole-plot haying treatments and 11 subplot fire or mowing treatments. Subplot sizes are 13.7 x 18.3 m. 

Kruger National Park (KNP), South Africa. The KNP is a 2 million ha protected area of savanna grassland that includes many of the large herbivores common to southern Africa (22º 25' to 25º 2 32' S, 30º 50' to 32º 2' E). The extant abundance and grazing intensity of herbivores in KNP is considered moderate for regional savanna grasslands. In the south-central region of KNP where our research takes place, average rainfall is 537 mm with most falling during the growing season (Oct-Apr). The dormant season is mild, dry and frost free, and summers are warm with mean monthly maximum air temperature of 28.9oC in January. Because of the importance of fire in savanna grassland ecosystems, the Experimental Burn Plot (EBP) experiment was initiated in 1954 to examine the effects of fire frequency (control-no fire, 1-, 2-, 3-, 4- and 6-yr return interval) and season [early spring (Aug), spring (Oct), mid-summer (Dec), late summer (Feb), and fall (Apr)] on vegetation communities in the park. Four blocks of 12 plots (two were later split for the 4- and 6-yr trts), each ~7 ha (370 x 180 m) in size, were established in four primary vegetation types covering the two major soil types (granites and basalts) and spanning the precipitation gradient in the park. Each plot has 50+ years of known fire history, and native herbivores have had unrestricted access, thus fire and grazing effects are combined. This research focuses on the EBPs located near Satara where precipitation, soil type, and the mix of herbaceous and woody plants are similar to KPBS. Vegetation on the blocks is co-dominated by C4 grasses, such as Bothriochloa radicans, Panicum coloratum and Digiteria eriantha, and woody plants, such as Acacia nigrescens and Sclerocarya birrea.  Soils are fine-textured and derived from basalts. Adjacent to one of the Satara blocks is the Cape buffalo enclosure, erected in 2000 for veterinary purposes. The 200 ha permanent enclosure contains 65-80 animals and is divided into 4 blocks burned on a rotational basis. The grazing intensity inside is comparable to the moderate levels imposed in the park and at KPBS. Two blocks are burned annually while others are burned infrequently (approximately once every 4-yr). 

Konza Prairie Biological Station (KPBS), North America. The KPBS is a 3,487 ha savanna grassland in northeastern Kansas, USA (39o 05’ N, 96o 35’ W) dominated by native perennial C4 grasses such as Andropogon gerardii and Sorghastrum nutans that account for the majority of ANPP. Scattered shrub and tree species include Cornus drummondii, Gleditsia triacanthos, and Prunus spp. Numerous sub-dominant grasses and forbs contribute to the floristic diversity of the site. The climate is continental, with mean July air temperature of 27°C. Annual precipitation is ca. 820 mm/year, with 75% falling as rain during the Apr-Oct growing season. Soils are fine textured, silty clay loams derived from limestone and shales. KPBS includes fully replicated watershed-level fire and fire/grazing treatments, in place since 1977 and 1987, respectively.  Replicate watersheds (mean size ~60ha) are burned at 1-, 2-, 4-, 10- and 20-yr intervals, mainly in April, to encompass a range of likely natural fire frequencies and management practices. A subset of watersheds has not been grazed for more than 30 years. To address the role of native grazers and fire/grazing interactions, bison (~260 individuals) were reintroduced to KPBS in a 1000-ha fenced area that includes replicate watersheds burned in the spring at 1-, 2-, 4- and 20-year intervals. The overall grazing intensity is considered moderate.

Study Area 1:  

Study Area Name:  Ukulinga Research Farm

Study Area Location: Near Pietermaritzburg, South Africa 

Elevation: 840 m above sea level

Landform: Colluvium fan

Geology: Marine shales and dolerite colluvium

Soils: Dystric leptosols, Chromic luvisols, Haplic plinthisols

Vegetation: Native grassland

Climate: Mean annual precipitation is 844 mm, Mean annual temperature 17.6C

Site history: Ungrazed since 1950

Single Point: 29o 40’ S / 30o 20’ E

Study Area 2:  Kruger National Park, South Africa

Study Area Name: Satara Experimental Burn Plots and Cape Buffalo Exclosure

Study Area Location: Near Satara rest camp

Elevation: 240-320 meters above sea level

Landform: Level Upland

Geology: Basalts

Soils: Rhodic nitisols, Haplic luvisols, Leptic phaeozems

Vegetation: Native grassland

Climate: Mean annual precipitation 544 mm; mean annual temperature 21.2–23.3C

Site history: Grazed by native herbivores

Single Point: 23–25o S /30-31o E

   

Study Area 3:  Konza Prairie Biological Station

Study Area Name: Konza Prairie

Study Area Location: Watersheds N20B, N4D, N1B, N4B; 1D, 4F, 20B

Elevation: 320-444 meters above sea level

Landform: Alluvial terrace

Geology: Cherty limestone and shale

Soils: Udic argiustolls

Vegetation: Native grassland

Climate: Mean annual precipitation 835 mm; mean annual temperature 12.7C

Site history: Ungrazed watersheds (since 1971), watersheds grazed by native herbivores (since 1987)

Single Point: 39o 05.48’ N / 96o 34.12’ W

Capital Breeding and Allocation to Life History Demands are Highly Plastic in Lizards at the Sevilleta National Wildlife Refuge, New Mexico: Field Study

Abstract: 

The use of stored resources to fuel reproduction, growth and maintenance to balance variation in nutrient availability is common to many organisms. The degree to which organisms rely upon stored resources in response to varied nutrients, however, is not well quantified. Through stable isotope methods we quantified the use of stored versus incoming nutrients to fuel growth, egg and fat body development in lizards under differing nutrient regimes. We found that the degree of capital breeding is a function of an individual’s body condition. Furthermore, given sufficient income lizards in poor condition can allocate simultaneously to storage, growth, and reproduction, which allowed them to catch up to better conditioned animals. In a parallel, inter-specific survey of wild lizards we found that the degree of capital breeding varied widely across a diverse community. These findings demonstrate that capital breeding in lizards is not simply a one-way flow of endogenous stores to eggs, but is a function of the condition state of individuals and the availability of nutrients during both breeding and non-breeding seasons. Here we explore the implications of these findings for our understanding of capital breeding in lizards and the utility and value of the capital-income concept in general.

Data set ID: 

261

Core Areas: 

Keywords: 

Methods: 

Lizard Capture: 

For measures of capital breeding in wild lizards, females of seven species were caught April through July of 2008 under the approval of the University of New Mexico institutional animal care and use committee (UNM-IACUC #05MCC004).  The species captured were: Cophosaurus texanus, Crotaphytus collaris, Eumeces multivirgatus, Phrynosoma modestum, Sceloporus undulates consubrinus, Urosaurus ornatus, and Uta stansburiana.   Lizards deemed by palpation to be egg-bearing were returned to the lab, euthanized and reproductive tissues prepared for stable isotope analysis (see below).  

Stable isotope treatments:

After the lizards were euthanized liver, fat body, and thigh muscle samples were harvested, freeze dried and a 0.5 mg sample was placed into a pre-cleaned tin capsule (Costech, #041074, Valencia, CA) for stable isotope analysis.  Eggs and follicles were also harvested, their length and width measured and freeze dried.  All lipids were extracted from freeze dried and ground muscle and eggs/follicles by a 2:1 chloroform and methanol bath; lizard muscle had undetectable amounts of lipids.  The suspended lipids from eggs were pipetted into separate storage vials and air dried.  Lipids and lipid-free egg tissues were then loaded into tin capsules.  We measured the δ13C of each egg and follicle greater than 6mm in length (½ the length of shelled eggs and assumed to reflect reproductive allocation).  Our stable isotope methodology follows standard methods and our protocol is described in detail in Warne et al. (2010a, 2010b).  We report all isotope values in the standard delta notation (δX = (Rsample /Rstandard – 1) x 1000) in parts per thousand (‰) relative to the international carbon standard VPDB (Vienna Pee Dee Belemnite).  Measurements were conducted on a continuous flow isotope ratio mass spectrometer in the UNM Earth and Planetary Sciences Mass Spectrometry lab.  The precision of these analyses was ± 0.1‰ SD for δ13C based on long-term variation of the working laboratory standard (valine δ13C = -26.3‰ VPDB), samples of which were included on each run in order to make corrections to raw values obtained from the mass spectrometer. 

Essential to this study is the observation that differences in photosynthetic biochemistry inherent to C3- and C4-plants produces distinct differences in the d13C of their tissues, which can be used to trace the movement of nutrients through consumers (Hobson et al. 1997, O'Brien et al. 2000).  Because winter and summer monsoonal rains drive seasonally separated C3 and C4 plant production and resource flux in Chihuahuan Desert food webs (Warne et al. 2010b), we hypothesized that we could use natural variation in the δ13C of C3 and C4 resources to examine capital breeding in wild lizards. We predicted that during the late summer and early fall lizards would develop endogenous lipid stores (capital) from C4 derived sources because C4 plants (primarily grasses) comprise the bulk of primary production during this period.  We also hypothesized that reproduction in the spring (the income source) would be fueled by C3 plants associated with winter rains. We subsequently sampled female lizards of a variety of species during April through June 2008 to gauge the relative use of capital (C4) versus income (C3) resources for their first clutch of the season.  The lizards were collected from a mixed Creosote and gramma grassland. 

We used tissue d13C values and a standard two-end-point mixing model to estimate the proportion of endogenous fat or muscle (capital) and incoming insect-dietary sources used to provision eggs.  The mean δ13C value of insects feeding on C3 plants (-27.3‰) served as an income source (see Warne et al. 2010b).  The discrimination (Δ13C) values used in this model for muscle (-1.9‰) and fat bodies (0‰) were experimentally determined for S. undulatus (Warne et al. 2010a).  

Additional information: 

 Study Area 1:  

*Study Area Name:  Socorro NM

*Study Area Location:  BLM land 11 miles south of Socorro, NM

*Study Area Description:  Mixed creosote and gramma grass shrubland

*GPS Coordinates:  

North Coordinate:  33°56'54.88"N

West Coordinate: 106°57'6.26"W

Study Area 2:  

*Study Area Name:  Tres pistoles 

*Study Area Location:  BLM land 13 miles east of Albuquerque, NM

*Study Area Description:  Mixed shrub and gramma grassland

*GPS Coordinates:  

North Coordinate:  35° 4'44.38"N

West Coordinate: 106°26'48.29"W

Influence of Pedogenic Carbonate on the Physical and Hydrologic Properties of a Semi-Arid Soil at the Sevilleta National Wildlife Refuge, New Mexico

Abstract: 

The goal of this project is to determine the nature and magnitude of changes in the hydrologic properties of arid soils with increasing amounts of pedogenic calcium carbonate. The amount and morphology of the calcium carbonate in arid soils varies laterally and vertically with changes in the age of the soils, thus the hydrologic properties also vary systematically The calcium carbonate cements soil particles changing the apparent texture of the soil horizon and thus other soil properties such as structure, porosity, moisture retention, and unsaturated and saturated hydraulic conductivity also change significantly. There has been no systematic study of the impact of increasing amounts of calcium carbonate on the hydrologic properties of semi-arid soils. The ultimate goal of this study is to provide a basis for developing more accurate pedotransfer functions, which are the main methods for obtaining soil hydrologic properties of rangeland soils. 

Core Areas: 

Additional Project roles: 

42
43
44

Data set ID: 

240

Keywords: 

Methods: 

Selection of Surfaces: Three terraces of different ages were chosen at the outlet of a small watershed basin at the base of Sierra Ladrones  in North West Sevilleta National Wildlife Refuge. These surfaces have shown varying stages of calcic horizons.

Digging Pits: 3 Pits up to a meter deep were dug on each surface. 

Describing the Soils: the soil profile in each pit was described using USDA soil survey guidelines.

Soil Sampling: From every pit, soil samples were collected every 10 cm. Also soil peds were collected from every horizon for bulk density analysis.

Infiltration Experiment: In order to check the soil hydraulic conductivity, a tension disk infiltrometer was used on every soil horizon in each pit.

Laboratory Analysis: The soil samples were split and sieved for laboratory analysis

CaCO3 Content: The total inorganic carbonate content was calculated using Chittick’s apparatus

Bulk Density: The bulk density of the soil peds was calculated using the Clod’s apparatus.

PSDA: Particle size distribution analysis was carried out with the presence of carbonate on the 2mm sample.

Carbonate Digestion: The carbonate was digested to remove the amount of carbonate from the sample. PSDA was performed again on the soil samples without the carbonate.

Additional information: 

Information on Collection Sites:

Study Area 1:  

Study Area Name: Surface 1(Pit 1)(Young Surface)

Study Area Location: Outlet of the small watershed basin at the base of Sierra Ladrones

Study Area Description:  

Elevation: 1623 m

Landform: Terrace

Geology: Quaternary Sierra Ladrones Formation

Soils: Laborcita-Pilabo-Lemitar complex

Vegetation: Shrubland

Climate: Semi arid, Rainfall ~ 250 mm

Single Point:  

North Coordinate:  34° 24.5’

West Coordinate: 106°  58.1'

Study Area 2: 

Study Area Name: Surface 2 (Pit 2)(Intermediate Surface)

Study Area Location: Outlet of the small watershed basin at the base of Sierra Ladrones

Study Area Description:  

Elevation: 1615 m

Landform: Terrace

Geology: Quaternary Sierra Ladrones Formation  

Soils: Laborcita-Pilabo-Lemitar complex

Vegetation: Shrubland

Climate: Semi-arid, Rainfall ~250 mm

Single Point:  

North Coordinate: 34°   24.491' 

West Coordinate: 106°  58.046' 

Study Area 3:  

Study Area Name: Surface 3 (Pit 3) (Oldest Surface)

Study Area Location: Outlet of the small watershed basin at the base of Sierra Ladrones

Study Area Description:  

Elevation: 1633 m 

Landform: Terrace

Geology: Quaternary Sierra Ladrones Formation  

Soils: Laborcita-Pilabo-Lemitar complex

Vegetation: Pinon-Juniper/Shrubland

Climate: Semi-arid, Rainfall~250 mm

Single Point:  

North Coordinate: 34° 24.405' 

West Coordinate: 106° 58.020'

Other Field Crew Members: Ritchie Andre and Ramirez Carlos

Gunnison’s Prairie Dog Use of Resource Pulses in a Chihuahuan Desert Grassland at the Sevilleta National Wildlife Refuge, New Mexico: Re-sight Scan Data

Abstract: 

Seasonal environments experience cyclical or unpredictable pulses in plant growth that provide important resources for animal populations, and may affect the diversity and persistence of animal communities that utilize these resources. The timing of breeding cycles and other biological activities must be compatible with the availability of critical resources for animal species to exploit these resource pulses; failure to match animal needs with available energy can cause population declines. Adult Gunnison’s prairie dogs emerge from hibernation and breed in early spring, when plant growth is linked to cool-season precipitation and is primarily represented by the more nutritious and digestible plants that utilize the C3 photosynthetic pathway. In contrast, summer rainfall stimulates growth of less nutritious plants using the C4 photosynthetic pathway. Prairie dogs should therefore produce young during times of increased productivity from C3 plants, while pre-hibernation accumulation of body fat should rely more heavily upon C4 plants.  If seasonal availability of high-quality food sources is important to Gunnison’s prairie dog population growth, projected changes in climate that alter the intensity or timing of these resource pulses could result in loss or decline of prairie dog populations.  This project will test the hypothesis that population characteristics of Gunnison's prairie dog, an imperiled grassland herbivore, are associated with climate-based influences on pulses of plant growth.

Data set ID: 

242

Core Areas: 

Additional Project roles: 

40
41

Keywords: 

Methods: 

Gunnison’s prairie dogs will be monitored at 6 colonies, with 3 colonies each occurring with the range of prairie and montane populations. Colonies for study within the prairie populations occur at Sevilleta National Wildlife Refuge (n = 3 prairie populations) and at Vermejo Park Ranch (n = 3 montane populations).  Live-trapping of prairie dogs will be conducted during 3 periods of the active seasons—following emergence (April), after juveniles have risen to the surface (mid-to-late June), and pre-immergence (beginning in August).  Trapping will occur for 3-day periods, following pre-baiting with open traps.  At capture, sex and body mass of each individual will be recorded.  Blood and subcutaneous body fat samples will be collected nondestructively for analysis of isotopic composition.  Prairie dogs will be marked with dye, and released on site immediately following processing.  After trapping periods at each site have concluded, population counts will be conducted during 2-3 re-sighting (or recapture) periods for each prairie dog colony.  Resighting observation periods will be ~3 hours in length, and consist of 2-6 systematic scans of the entire colony, beginning and ending from marked points outside of the colony boundary.  During each observation period, prairie dogs will be counted, recorded as marked or unmarked, and location on the colony noted.  

Vegetation cover and composition measurements will be collected (or obtained at Sevilleta, where such data is already being collected) during pre- and post-monsoon periods of the active season.  Total cover will be measured by plant species (or to genus if species is indeterminable). Total cover will be measured at 12 grid points per colony using Daubenmire frames (0.5 m x 0.5 m), and at 12 grid locations 200-800 m outside of each colony boundary.  Adjacent to each Daubenmire frame, a 20 cm x 30 cm sample of vegetation will be clipped and dried for determination of volumetric moisture content of vegetation.  

Primary productivity variables (cover, moisture content) will be tested for correlations to individual and population-level condition indicators in prairie dogs.  Carbon isotope ratios (δ13C) from prairie dog blood and fat samples will be analyzed on a continuous flow isotope ratio mass spectrometer.  The relative contribution of C3 and C4 plants to the diet of each individual will be determined based upon δ13C ratios for C3 and C4 plants in the study area and a 2-endpiont mixing model, and will be calculated for each individual animal, population and season.  Population estimates will be calculated using mark-resight estimates, and compared to maximum above-ground counts.  The influence of resource pulses on prairie dog population parameters will be tested by comparing the vegetation cover, moisture content, and ratio of total C3:C4 plant cover to the ratio of C3:C4 plants in prairie dog diets, population estimates, and juvenile:adult ratios as an index to population recruitment.   

Instrumentation: 

*Instrument Name: Continuous flow isotope ratio mass spectrometer

*Manufacturer: Thermo-Finnigan IRMS  Delta Plus 

*Instrument Name: Elemental Analyzer

*Manufacturer: Costech

*Model Number: ECS4010

Additional information: 

Other Field Crew Members: Talbot, William; Duran, Ricardo; Gilbert, Eliza; Donovan, Michael; Nichols, Erv; Sevilleta LTER prairie dog field crew led by Koontz, Terri; Sevilleta NWR prairie dog field crew led by Erz, Jon.

Tissue samples are analyzed for stable carbon isotope ratios in stable isotope laboratory operated by Dr. Zachary Sharp and Dr. Nicu-Viorel Atudorei of the Department of Earth and Planetary Sciences, University of New Mexico.

The primary objective of this study is to examine the control that substrate quality and climate have on patterns of long-term decomposition and nitrogen accumulation in above- and below-ground fine litter. Of particular interest will be to examine the degree these two factors control the formation of stable organic matter and nitrogen after extensive decay.

Pages

Subscribe to RSS - field methods